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ABST}_ACT

This report presents the results of an experimental and analytical

study of human performance in uncoupled and coupled control systems con-

ducted under NASA Contract NAS 1-&A19, monitored by the NASA Langley

Research Center.

Human pilot performance in single and two-axis systems was mathe-

matically modeled by linear second-order describing functions. Model

parameters were determined using model matching techniques. Analysis of

the models showed that the amplitude ratio and phase lead of the des-

cribing function increased with training indicating an increase in open

loop bandwidth. The phase margin also decreased with training. Increas-

ing the plant lag time constant resulted in an increase in the model

lead time constant and a decrease in the zero frequency gain. No signifi-

cant difference was found to exist in the normalized tracking error per

axis between the two-axis tasks and the single-axis tasks. However the

model lead time constant was significantly greater in two-axis tracking.

Manual tracking of two-axis systems with cross-coupling was

studied experimentally and analytically. Approximate methods for model-

ing two-axis performance were developed and checked using a precise

spectral analysis approach. Coupled and uncoupled, symmetrical and

asy_netrieal two-axis performance was compared. The results show that

modeling of cross-coupled systems is feasible and that trained subjects

are capable of decoupling the axes of some systems.

A methodology study compared the identification performance of

continuous, iterative, and extrapolation model matching techniques.

An iterative technique employing sensitivity equations for the generation

of influence coefficients was found to be the best technique due to its

excellent identification accuracy and ease of implementation. Conver-

gence in iterative techniques can be improved substantially by equalizing

the parameter adjustment rates and limiting the maximum correction per

it eration.
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1. INTRODUCTION

This report presents the results of the second phase of a

two year study program on model matching techniques for the deter-

ruination of parameters in human pilot models. Model matching

techniques refer to a method of system identification where the

parameters of an ass_ed methematical model are adjusted so as to

minimize an appropriate function of the difference between system

and model outputs. The first year of the study concentrated on

testing the feasibility of applying the method to identification

of human pilot performance in a variety of manual tracking systems.

The results are reported in NASA CR-14 S (Reference 5).

The objective of the research reported here was to apply model

matching techniques to study human performance in more realistic

control situations, with an e_phasis on two-axis tracking. While

the first year study concentrated on feasibility, the present

study was directed toward obtaining statistically meaningful data

on human performance, in both single and two-axis manual control

systems. An additional objective was the further development of the

modeling techniques and evaluation of their accuracy.

The report is divided into three major sections. The first

of these is concerned with the effects of such variables as task

difficulty and training on human performance in both single and

uncoupled two-axis compensatory tracking systems. The effects

of training and task difficulty were evaluated by examining the

parameters of mathematical models. Analyses of variance were per-

formed in order to obtain statistical significance levels for the

major results.

The second section of the report is devoted to reporting the

results of a study of human performance in two-axis manual control

systems with cross-coupling. Very little background exists in the

area and consequently techniques for determining the mathematical

models had to be developed. Model matching techniques were applied

and their accuracy was tested by means of a theoretically exact

spectral analysis technique which was developed for the purpose.

In the spectral analysis technique developed, the human operator is

1



representedby a matrix whoseelementsare determinedfrom a know-
ledgeof the systemplant dynamicsand the spectral matrices of the
systemexcitation and tracking error signals. This portion of the
studyhad two major objectives, namely, to apply modelingmethods
to the cross-coupledsystemand to find whetherthe humanoperator
wascapable of decoupling the system. Analysis of variance was
againemployedto test the significance of the conclusions.

Thethird section of the report deals with modelingmethod-
ology. It includes the results of studies on the effect of excita-
tion bandwidthand modelform onparameteraccuracy, on approximate
techniquesfor computationof time delay and higher order terms in
the modeland on certain situations in whichparameterscannotbe
determinedprecisely. It includes a derivation of the theoretically
exact spectral analysis technique developedfor mathematicalmodel-
ing of humanperformancein coupledtracking systems. Identifica-
tion accuracyand general performanceof continuous andvarious
iterative modelmatchingtechniquesare comparedfor both openand
closedloop formulations, with the objective being the selection of
anoptimumtechnique.

2



HUMAN PERFORMANCE IN SINGLE AND TWO AXIS SYST_S

Introduction

This section presents the results of a study of human track-

ing performance in single axis and uncoupled two-axis manual con-

trol systems. Controlled element dynamics were selected to

approxLmate a realistic aircraft control task. The major objec-

tive of this phase of the work was the collection and evaluation

of statistically meaningful data on the effects of training, task

difficulty, and single vs two-a_is tracking.

The evaluation was performed by first obtaining describing

function models for each control configuration using a continuous

model matching technique and then anal_vzing the parameters of the

describing function to determine the functional relationship be-

tween the parameters and task difficulty or training. This

analysis was conducted in the frequency domain using conventional

control system theory. Single and two-axis tracking systems were

compared through the use of describing function parameters and

Bode diagrams. Both the analysis and comparison were subjected

to an analysis of variance to determine the significance of the

results obtained. The above analysis and comparison were used

as the basis for specifying the characteristics of human perform-

ance in the single and two-axis tracking tasks investigated.

Experimental Design

Experimental Outline

Training and performance experiments were performed on two

manual control systems. Both experiments were concerned with

c_satory tracking of a spot on a CRT dlspla_ using a finger-

tip controller. One system was restricted to single-axis control

and the other to two-axis control with symmetrical uncoupled

plant dynamics. The specific objectives were to obtain data for

study of the following problems:

I) Evaluation of the effect of training on tracking performance.

2) Evaluation of the effect of task difficulty on tracking per-

formance.

3) Determination of human pilot models.

3



2.2.2

_) Comparison of single and two-axis tracking.

The plant dynamics were chosen to simulate the roll dynamics

of a fighter-type jet aircraft. A previous study by Creer et al

(Ref. I) on pilot opinion ratings of the lateral control charac-

teristics of such aircraft was used to obtain the parameters of

the plant dynamics.

Input disturbance signals for the tracking systems were

obtained by filtering the output of a gaussian noise generator

with a third-order filter. The input amplitude to the system was

held constant at 3.5 cm RMS deflection on the CRT display.

The control task difficulty was adjusted by choosing the time

constant in the plant dynamics and the break frequency of the in-

put filter.

The experimental design was a nested factorial with subjects

nested within single axis versus two-axis tracking. The within

group variables were task difficulty and number of sessions. There

were four replications within each session. A random sample of

three subjects was used within each group. The a priori reasons for

the choice of nesting subjects within number of axes was that there

might be a transfer of training effect when a subject goes from a

single to a two-axis task or vice versa. Subjects with former track-

ing experience were used. Experimental runs were of 3 minutes

duration and only the central 2 minutes were scored.

_ystem Configuration

Figure 2-1 illustrates the configuration of the single axis

compensatory tracking system used. This system was a simulation of

the roll attitude control system typical of fighter-type aircraft as

discussed in Reference i and consequently represents a realistic

control task.

Two alternate plant dynamics were chosen from Reference 1 to

give satisfactory and unsatisfactory control respectively. With a

time constant (T) of 0.3 sec the control is satisfactory (Cooper

rating - 3) while a 3 sec time constant results in unsatisfactory con-

trol (Cooper rating - 5). An unsatisfactory control configuration was

used to increase the control task difficulty for purposes of assessing

the human operatorts performance in a more difficult task. The plant

dynamics used had the following form:

4
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2.2.3

where

5__ KG(s) - (s) = s(Ts + 1)
a

K T

(roll rads/sec) (sec)
aileron tad

5.15 0.3
5.15 3.0

K

5 =
a

6s =

5s max. =

/roll rad/sec_

TL6 a \aileron rad /

/roll rad/secf_
roll angular acceleration per unit \aileron rad /

aileron angular deflection

aileron angular deflection (aileron rad)

roll angle (roll rads)

stick angular deflection (stick rads)

20 degrees

The operating gains were chosen fr_a Figure ii of Reference I

under the assumption that 5s = 5a.

In the two-axis experiment, two channels identical to the system

shown in Figure 2-1 were used. Although the realism of such a task

is questionable, it was used nevertheless to obtain performance data

on two-axis tracking for comparison with the performance of the

human operator in a similar single axis task.

Task Definitions

Four control tasks were formulated for the experiment and were

common to both the single and two-axis phases. The four tasks were

designed to exhibit.a progressive increase in control difficulty.

Specifically the tasks were defined as follows:

TASK

0.2 0.2 I.O
\sec/

T (sec) 0.3 3.0 0.3 3.0

6



2.2./+

The variable _ represents the break frequency of the third-order

input filter while T represents the time constant of the plant

dynamics. In two-axis tracking, a separate gaussian noise genera-

tor was used for each axis to insure that the correlation between

the two inputs would be zero.

Run Schedule

The run schedule for the single axis group was divided into 8

sessions, where the first 6 sessions constituted the training period

while the last 2 sessions were the performance sessions. In half

of the training and performance periods, the single axis experiment

was performed with the system error (x) displayed vertically on

the CRT while in the other half, the error was displayed horizontally.

A vertical error required that the operator manipulate his fingertip

controller in a vertical plane while a horizontal error required a

horizontal response.

The experimental conditions may be summarized as follows:

.E_erimental Conditions

System Configuration (SC)

a) Single axis

Plant Dynamics (G)

a) T = 0.3

Filter Break Frequency (F)

a) % - 0.2 rad/e_

Subjects (S)

S=3

Replication (R)

R-_

b) Two-axis

b) T - 3.0

b) _b = 1.O rad/sec

Each session consisted of _8 runs: each subject performed four

replications of the task for each of the plant dynamics and each

filter break frequency, i.e., G x F x S x R = _8. The order of

presentation of the tasks was randomized for each subject and each

session. Subject fatigue was kept at a minimumby using a rest

7



2.3

period of approximately 3 minutes after each replication. It was

also found necessary to limit the continuous experimentation

period to half a session.

Since training was one of the main variables of the experiment,

the subject was given a performance score upon the completion of

each replication. The MS value of the system tracking error was

used as the performance measure. Normalization of the error with

respect to the input signal was not performed as the RMS value of

the input signal amplitude was kept approximately constant during

the replication period.

In the training sessions the second replication of each task

was recorded on FM tape for future analysis by model matching

techniques. All replications of the performance session were

recorded.

The run schedule for the two-axis phase differed from the

schedule given above for the single axis phase in that five

sessions were used for training instead of six. This constituted

the only difference between the two schedules.

Determination of Human DescribinE Function Parameters

The human operator response data obtained in the manner out-

lined in Section 2.2 was analyzed by using the continuous model

matching technique. In using this method to determine human

describing functions for the response data, it was assumed that

the human operator behaved as a second-order linear system governed

by the equation

.@

+ _i;+ _2_ " _3_ + _4_ (2.1)z

where x is the input to the human, z is the model output and ml'

a2' _3' _ are the differential equation parameters to be deter-

mined. Equation 2.1 may be transformed to the complex frequency

domain and rewritten in describing functicm notation

x_ K(TI" + i)
" (T2s+ i) (T3s+ l)

(2.2)

8



where s is the Laplace operator, K is the zero frequency gain, and

TI, T2, T3 are the describing function time constants.

Since the primary purpose of the human performance study was

to evaluate the effects of task difficulty, training, and system

configuration on the describing function parameters, modeling of

a large number of experimental runs was required. The continuous

model matching method described in Section 4.2 was the most rapid

and economical method available at the time the study was performed.

The technique is readily implemented on a conventional analog com-

puter and requires only the time functions x and y, the input and

output of the human operator, respectively. These signals were

recorded on magnetic tape during the experimentation period and

were later analyzed to obtain the desired models of human response.

A block diagram of the basic open loop continuous method is pre-

sented in Fig. 4-2 of Section 4.2. The modified error criterion

function discussed in Section 4.2 was used to optimize the per-

formance of the continuous technique. Operational constants used

in the model matching technique described above are listed in

Table 2-1. A typical time history of the model parameters obtained

for one subJectVs performance in the vertical axis is shown in

Figure C-1. A similar history was obtained for his performance

in the horizontal axis.

Table 2-i

Operational Ccastants for the Continuous

Model Matching Technique

Task Number i 2

Parameter Adjustment Gain, K 15 15

Rate Compensation Coefficient, 0.5 0.5

q(sec_ .,

Error Limit, L (degrees) .0033 .0033

Initial Parameter Values 20

2O

0

0

%

a4

20

2O

0

0

15

0.5

.02

2O

2O

0

0

4

15

6.5

.08

2O

2O

.0

0

9



The analysis of task difficulty and operator training was

aided by the use of several performance evaluation crite ria as

well as the parameter mean values. The performance measures

were the mean squared values of the tracking error x(t), the

human output y(t), the modeling error e(t) and the power match P.

The power match, defined by

P = - x 100% (2.3)

indicates the percentage of human output power matched by the

model.

A one minute period was found to be a sufficient length of

time for the parameters to converge to their approximate steady

state values. Therefore, the first minute of the modeling of

each two minute human response tracking run was utilized for para-

meter convergence. The adjustment loop gain was then automatically

reduced by a factor of lO in order to minimize the effect of short

term time variations in the parameter values. The performance

measures were computed during the final minute of each run.

The performance of the model matching technique is indicated

by the power match obtained for each of the run replications as

shown in Fig. 2-2. Response models for Tasks 3 and 4 normally

gave a power match from 70 to 80 percent while Task 2 response

data yielded a power match of 50 to 60 percent. Models for the

Task 1 response data could not be successfully obtained. This

result was caused by operator output signals of very low frequency

which produced unstable operation of the parameter adjustment

loop. For Tasks 3 and 4, the power match is approximately constant

over the whole range of replications R. Consequently, since model

matching accuracy remains invariant during the experimental series

it may be concluded that any changes in model parameters were

in fact due to training of operators. The power match for Task 2

exhibits considerably greater variability and consequently Task 2

results must be interpreted more cautiously.

10
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2.4 Effect of Training and Task Difficult2 on S2stem Tracking Error

In order to analyze the system tracking error, the normalized

mean square error was used as a performance measure. Specifically,

this measure is defined by
2

xmdt
2-- A oJ

= ,[2 (2.L,)xN r2dt
o

which indicates that the integral square error is normalized by

the integral square input signal over the two minute scoring period.

Such a normalization is necessary to take into account the run to

run variations in input power which take place when the input

signals are not deterministic but consist of sample functions of

random processes. The analysis of system tracking error was per-

formed only for those trials from which model matching results

were obtained.

In order to compare single axis tracking with two-axis tracking

only one of the two-axis error scores could be chosen. Therefore

an analysis was performed to determine if there was any significant

difference between the horizontal and vertical axes for both the

single and two-axis data. Using the Students t-test no significant

difference was found. Therefore a score was chosen alternately from

the horizontal or the vertical axis of the two-axis tracking scores

for testing against the single axis score.

Two analyses of variance tests were conducted to determine sig-

nificant differences between the variables. The first analysis

tested differences during the learning period while the second

analysis tested differences during the performance period.

In the first analysis the variables were training, number of

axes, and task difficulty. For this test the second replicate of

the system tracking error for each of the first seven training

sessions was used as the test score. The result of this test is

shown in Table 2-2. This table indicates that task difficulty,

training and training-task difficulty interaction were significant.

There was no significant difference between one and two-axis track-

Lug To further evaluate the effect of training, the error scores

12



Table 2-2

Analysis of Variance of the Normalized Mean Square Error

Degrees Mean

of Sum of Square

Sourc______ee Freedom Squares MS F-ratio

TRAINING PERIOD

Axis (A) 1 2/+1 22+1 <l

Subjects within _ 274A 686
A_s (SCA))

Tasks (T) 2 10098 50_8 17.02_ •

Training (L) 6 3168 528 6.44-_-_
A x T 2 202 iO1 <I

A x L 6 5&2 90 i.iO

T x L 12 3232 269 _.95"**

T x S(A) 8 2373 297

L x S(A) 24 1966 82
A x T x L 12 612 51 _i

T x L x S(A) &8 2610 5&

PERFORMANCE PERIOD

Axis (A) 1 8 8 <l

Subjects within & 681 170

A_s (SCA))
Tasks (T) 2 3&59 1729 23.78***

Replicates (R) 7 79 ii <l
AxT 2 3 2 _i

A xR 7 69 io <i

TxR IA llA 8 <i
T x S(A) 8 582 73

R x s(A) 28 28S lOi
A x T x R 14 118 84 1.13

T x R x S(A) 56 416 7&

** Significant at .O1 level (1%)

_* Significant at .OO1 level (0.1%)

13



2.5

2.5.1

were determined for each task and training session by averaging

across subjects. These scores are shown in Figure 2-3 and indi-

cate that the task difficulty varies directly with the task code

number, i.e., Task 4 was the most difficult and Task 2 the least

difficult. These scores show that the amount of learning that

occurred varied with task difficulty, i.e., for the more diffi-

cult tasks, the amount of learning was greater. This relation-

ship would explain the significant interaction.

The variables of the second analysis were replicates of the

performance period, number of axes and task difficulty. For this

test the four replicates of each of the last two sessions were

used as test scores. Table 2-2 shows that for this test the only

significant difference was due to task difficulty. The levels of

task difficulty, averaged across subjects and replicates are ao-

parent from Figure 2-3. It should be noted that in this test as

in the previous training analysis there was no significant differ-

ence between single and two-axis tracking.

Effect of Training on Human Describing Function Parameters

It has been shown in Section 2.A that the system tracking

error decreased as the subjects became more experienced or trained

in controlling the tracking system. In this section, the human

describing function parameters are examined using conventional

control system theory to determine which parameters a human opera-

tor changes to achieve greater tracking accuracy. Both the single

and two-axis control tasks are analyzed and emphasis is placed on

describing the human operatorts performance in the frequency

domain. An analysis of variance to determine the significance

level of the results obtained is presented in Section 2.6.

Single-Axis Tracking

Human describing function parameters were evaluated for single

axis control tasks 2, 3, and _, using the model matching technique

as described in Section 2.3. In the training phase only the second

replicate in each training session was analyzed while every repli-

cate was evaluated in the two performance sessions of the experiment.

The parameters obtained were plotted versus replication (R) to deter-

mine if any correlation existed between the parameters and training.

14
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2.5.2

Because the variance of the data points was large the method

of least squares was used to obtain the best linear fit to the

variation of the data points with replication. The linear trends

obtained for each task were averaged over the three subjects to

obtain the average parameter trends as a function of training and

are shown in Figure 2-4.

Examination of the average trends shown in Fi_ire 2-4 reveals

an increase in the gain K for Task 3 and an increase in the time

constant T 1 for Task 4. _ll other trends are small by comparison.

In an attempt to gain a more complete understanding of the

parameter variations due to training, Bode diagrams were obtained

for the untrained subject (R=4) and the trained subject (R=32).

Bode diagrams were used as they give a complete pictumo of the

describing function in the frequency domain and hence can provide

an overall view of the interactions among the parameters. Figure

2-5 shows the average Bode diagram obtained for Task 4. Similar

diagrams were obtained for Tasks 2 and 3. Examination of the Bode

diagrams revealed that over a large frequency range, the amplitude

ratio and phase lead increased with training for Tasks 2 and _.

Task 4 exhibits the greatest increase in gain and phase lead

while Task 3 showed relatively little change. Task 3 did show an

increase in the zero frequency gain.

The system open loop Bode diagram (human operator plus plant)

for Task 4 is shown in Figure 2-6 and clearly indicates an increase

in amplitude ratio and phase lead with training. As a result the

open loop bandwidth (i.e., the frequency range over which the

amplitude ratio is greater than O db) also increases with training.

The phase margin V shows little change with training and has a

value of approximately 50 °.

Two-Axis Trackin_

Human describing function parameters were also evaluated for

Tasks 2, 3, and 4 of the two-axis tracking system using the same

analysis technique as described in Section 2.3. The parameters

obtained for each axis of the two-axis syst_ were averaged.

16
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2.6

These parameters were now averaged over the subjects and then

plotted versus replication to ascertain if any correlation existed

between the parameters and training.

Figure 2-7 shows the averaged least squared linear fits

obtained for the parameters in each control task analyzed. The

only trends which appear are:

• K increases for Task 3

• TI increases for Tasks 3 and 4

• T2 increases for Task 2

• T3 increases for Task 3 and decreases for Task 2

Average Bode diagrams obtained for Tasks 2, 3 and 4 consis-

tently indicate that the subjects (on the average) increased

their amplitude ratio, and bandwidth with training. The Task $

Bode diagram is shown in Figure 2-8. Phase lead increased only at

low frequencies while the phase margins decreased. The system

open loop Bode plot for Task 4 is shown in Figure 2-9 and indi-

cates that an increase in amplitude ratio, phase lead and band-

width was obtained with training. In addition the phase margin

decreased from 52° to 40°.

Effect of Task Difficult_ on Human Describing Function Parameters

The analysis of Section 2.4 was concerned with the relative

difficulty of the four tasks of the experiment. This section

deals with the correlations obtained between task difficulty and

the frequency response of the human operator. Both single and

two-axis performance data were analyzed. An analysis of variance

was performed to determine the significance level of the results.

Bode diagrams obtained for all tasks of the performance period

in the single and two-axis tracking systems were averaged over

subjects. The mean amplitude and phase diagrams are shown in

Figures 2-10 through 2-13. Examination of the Bode diagrams

for both single and two-axis tracking reveals the following

correlations between task difficulty and the frequency response

parameters:

2O
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l) The zero frequency gain K has a maximum value for Task 3 and

a minimum value for Task 2 (see Figures 2-10 and 2-12). Since

the lag time constant of the plant dynamics for Task 3 has one-

tenth the value of the corresponding time constant in the plant

dynamics of Tasks 2 and _, it follows that the Task 3 dynamics

are more stable than either the Task 2 or _ dynamics. Consequently
,/

the operator can use a higher operating gain in Task 3.
/

2) Figures 2-11 and 2-13 indicate that the operator's phase lead

at low frequencies was greater in Tasks 2 and % than in Task 3.

Since it has been shown above that Tasks 2 and 4 are more unstable

than Task 3, it is apparent that the operator compensates for the

destabilizing effect of the larger lag time constant by increasing

the lead time constant of his describing function.

3) The phase lead at low frequencies was less for Task 2 than

Task _ as shown in Figures 2-11 and 2-13. Since the input fre-

quency bandwidth for Task 2 was only 0.2 r/s while the input band-

width for Tasks S and _ was 1 r/s, it follows that Task 4 is a

more difficult task for which the operator will use more phase

lead.

The conclusions obtained above are based on the relative mag-

nitude of the zero frequency gain K and lead time constant T1

obtained for Tasks 2, 3, and _. Analysis of variance was used

to test the significance of both the K and TI parameters obtained

for each task, as shown in Tables 2-3 and 2-_ respectively. The

design of the analysis was identical to that used in Section 2._.

From Tables 2-3 and 2-4 it is evident that the dependence of both

K and TI on Tasks was significant at the 0.1% level. Thus the

data used in the above discussion is significant at the 0.1%

level.

Parameter variation due to learning was not significant.

This factor may be due to subject differences or the small sample

size. In observing the individual subjects it can be shown that

they started with different parameters prior to learning. However

after learning they converged to approximately the same model.
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Source

LEARNING PERIOD

_s (A)
Subjects within
_is (S(A)

Tasks (T)

Learning (L)
AxT

AxL

TxL

T x S(A)

L x S(A)
AxTxL

T x L x S(A)

Table. 2-3

Anal_sis of Variance for K

Degrees
of Sum of

Freedom Squares

Mean

Square
MS F-ratio

1 62 62 2.53

& 96 2&

2 2381 1190 79.5 *_*

6 23 _ <I

2 58 29 1.96

6 18 3 <I

12 66 6 1.50
8 119 15

24 108

12 36 3 <i

48 231 5

PERFORMANCE PERIOD

Axis CA)
Subjects within

Axis (S(A))
Tasks (T)

Replicates (R)
AxT

AxR

TxR

T x SCA)
R x S(A)
AxTx.R

T x R x S(A)

1 _3 _3 <1

& 202 50

2 36_ 1823 38.69***

7 3& 5 1.53
2 &9 25 <1

? 35 5 l.&&

I_ 73 5 1.65

8 376 &7
96 3

l_ 67 5 1.5o

56 177 3&

*** Significant at .001 level (0.1%)
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TRAINING PERIOD

(A)
Subjects within

Axis (S(A))

Tasks (T)

(L)
AxT
AxL

TxL

T x S(A)

L x S(A)
AxTxL

T x L x S(A)

Table 2-4

Analysis of Variance for TI

Degrees
of Sum of

Freedom _uares

Mean

_uare
F-ratio

I 922 922 1.34
4 2740 685

2 952O 4760 _A.2***
6 1265 211 1.20

2 58 29 <I
6 2313 386 2.20

12 2228 186 1.43
8 862 107

2& 4214 175
12 1897 158 1.22

_8 6219 129

P_FORMANCE PERIOD

Axis(A)
Subjects within
Axis (S(A))

Tasks (T)

Replicates (R)
AxT

AxR

TxR

T x S(A)

R x S(A)
AxTxR

T x R x S(A)

1 1525 1525 2.13

4 2867 717

2 2O991 10496 353.&***

7 1395 199 1.09
2 405 202 6.82*

7 I1_3 163 <l

IA _359 311 i._2

8 238 30
28 5110 182

14 2283 163 4
56 12286 219

* Significant at .05 level (5%)

*** Significant at .001 level (0.1%)
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2.?

Since subjects were treated as a random sample from a population,

differences between subjects could not be tested and in this

experiment there is no error term for testing the variables if

subjects are treated as a fixed sample.

Comparison of Single and Two-Axis Trackin_

A comparison was made between single and two-axis tracking

to determine what differ_ces existed between these two types

of control tasks. An analysis of variance performed on the

system tracking error for both types of control tasks showed

that no significant difference existed between single and two-

axis tracking for all control tasks as far as the system tracking

error was concerned (cf. Section 2._). However the analysis of

variance for the T1 data obtained in the performance period (cf.

Section 2.6), showed that the interaction between tasks and single

versus two-axis tracking was significant at the 5% level. This

interaction is shown explicitly in the values for T1 averaged

across subjects and replicates in Table 2-5 where only Tasks 3

and 4 show a difference. For both tasks T1 was significantly

larger in the two-axis tracking system. Bode diagrams obtained

from the performance data of Section 2.5 are shown in Figures 2-1_

through 2-16. The Bode diagrams in general confirm the analysis

of variance data in that the only large difference between single

and two-axis tracking appears to be the phase angle of Tasks 3

and 4.

Table 2-

Average TI for Single and Two-Axis Tracking (Seconds)

Ca_ 2 _ 4
Sln_le Axis 2.69 1.32 4.13

Two-Axis 2.83 2.09 5.12

31



0 0

F1
.L.!

il
I I

!!
ld
q ;

ii

.1!
I '

]-:
L
1.
I
I

4-
_L

!

I

I

I

-F
t

i
l

i

w

7
..L

i

I

I
I

1

,I
t

0
,-4

0

Cql

_"tl

_.-II

Ol

NI

0_,

(DI

.'T_- I

32



i
• /

i

0



o o

31,



2.8

2.8.1

2.8.2

The fact that system tracking error in either axis of the

two-axis group was no greater than that for the single axis group

is not contradictory of earlier results. In reviewing the litera-

ture, very few studies have directly tested this difference. In

analyzing the results of a study by Chernikoff, et al (Reference 2),

there appears to be no difference between one and two-axis track-

ing for tasks with controlled elements of position, rate and

acceleration. Recently in results from Bolt, Beranek and Ne_nan,

Inc. (Reference 3) no difference was shown between single and

two-axis tracking.

Conclusions

Experimental data obtained from single and two-axis tracking

experiments were analyzed using continuous matching techniques,

and conventional control system theory' An analysis of variance

was performed on the results obtained to determine their signifi-

cance level. The analysis of the human performance data led to

the following conclusions:

Single vs. Two-Axis Tracking Performance

l) The system tracking errors in the two-axis tasks were not

significantly different from the single axis tasks. If it is

assumed that the subjectts information processing capability is not

fully loaded the results of this experiment are plausible. The lat-

ter hypothesis could be tested by the addition of more axes wl_a

the same input function and d_namics until the subject's performance

starts to degrade due to task loading.

2) For Tasks 3 and _ only, the lead time constant T1 was signifi-

cantly larger in models of two-axis tracking than in models of

single axis tracking. Since this difference did not appear in

Task 2, it can be concluded that T1 is a measure of differences in

operator performance between single and two-axis tracking only

when the input signal bandwidth is sufficiently high.

Effects of Task Difficult 2

l) The task difficulty (as measured by tracking error) was

found to increase significantly with the task code number.
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2.8.3

2) The rate of decrease of system tracking error with training

was dependent upon task difficulty. The more difficult tasks

showed a greater degree of learning.

3) The human operator model showed a significantly higher zero

frequency gain in Task 3 than either Tasks 2 or _ because Task 3

was more stable as the lag time constant in the plant dynamics

was smaller by a factor of lO. For the same reason, the human

operator's model lead time constant was significantly greater

in Tasks 2 and 4.

&) The operatorVs model lead time constant was greater in Task

A_ than Task 2 because Task A was a more difficult task due to

the input frequency bandwidth being larger.

Effects of Training

l) System tracking error decreased significantly for all control

tasks in both single and two-axis tracking during training.

2) For both single and two-axis tracking, the average human

operator increased his amplitude ratio and phase lead with training

as measured from model Bode diagrams. These changes resulted in an

increased open loop bandwidth and a decreased phase margin.

3) An analysis of variance showed no significant trend to exist

in the variation of the parameters K and T1 (zero frequency gain

and lead time constant) with level of training. Parameters T 2 and

T3 were not tested.

The analysis of variance on the variation of the parameters K

and T1 with training showed that the variation was not significant.

The significance test performed may not be a valid test in this

case as only 2 parameters of the describing function were tested.

Since the describing function used consisted of _ parameters which

together describe the dynamic behavior of the human operator, it

appears that all parameters must be tested simultaneously to obtain

an accurate significance level. Since the Bode diagram is a com-

plete dynamic representation of the human describing function, it

is probable that conclusion 2 is more valid than conclusion 3.
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3.2

HUMAN PEZIFOR_aNCE IN T_O-AXIS SYSTEMS WITH CROSS-COUPLING

Int roduc tion

This section presents the results of a study of human track-

ing performance in coupled two-axis manual control systems. In

this phase of the work, the primary objective was the collection

and evaluation of statistically meaningful data on the effects

of training and cross-coupling. Emphasis was placed on determinirg

whether a human operator could successfully decouple a coupled

two-axis control task.

The evaluation was performed by first modeling the human

operatorts performance by an asymmetric lattice network and then

determining the network describing functions using an iterative

model matching technique. An analytical study of the coupled

two-axis control system showed that the system could be manually

decoupled if the network describing functions were properly related

to the transfer functions of the plant dynamics. The required

relations were explicitly expressed by two decoupling equations.

Describing functions obtained from the experimental study were

compared with the decoupling equations to deten_uhne if the human

operator was able to decouple the system. Training and task diffi-

culty were analyzed using system tracking error. The above analysis

and comparison was used as the basis for describing the character-

istics of human performance in the coupled two-axis systems inves-

tigat ed.

The Cross Coupled Human Operator Hodel

Human tracking performance in a two-axis system with input

cross-coupling was evaluated by modeling the human operator with

an asymmetric lattice network as shown in the signal flow diagram

of Fi§ure 3-1. This system representation is identical to that

given in Reference 4. The describing functions of the lattice

network are designated by Hi I while Gi i represents the transfer

functions of the plant dynamics. Coupling in the plant dynamics

is of an input form as a control input to the plant dynamics in

one axis produces a plant response in both axes. Components of the
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Figure _-i: The Two-Axis Input Coupled Tracking System

r
a

x
a

Ya

c
a

n
a

= a-axis refereace signal

= a-axis error signal

= a-axis stick deflection

= a-axis system output signal

= human operatorts response in the a-axis which is not

linearly coherent with ra or rb

Haa = linear describing function relating Ya to xa

Hba = linear describing function relating Yb to x a

Gaa = a-axis plant d_namics relating ca to Ya

Gba = a-axis coupling dynamics relating cb to Ya (i.e., input

cross-coupling

The corresponding signals and transfer functions in the b axis

are similarly defined.
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operator outputs (Ya and yb) which are not linearly coherent with

the forcing functions (ra and rb) are represented by the noise

signals (na and nb).

The coupled two-axis system can be decoupled if the human

operator is able to use the correct cross-coupled describing

functions in the lattice representation of his behavior. Decoup-

llng of the a axis from the b axis requires that the a axis output

signal ca be independent of the tracking error in the b axis xo.

For zero noise (na = nb = 0), it may analytically be shown that

ca is related to Xa andX b by the equation

ca = (Gaa Haa + Gab Hba)Xa + (Gaa Hab + Gab Hbb)Xb

Consequently the a axis will be decoupled from the b axis if the

human operator chooses Hab such that the following decoupling

condition exists

Hab-- \ aa Hbb
(3.1)

Similarly it may be sho_n that the decoupling condition required

for decoupling the b axis fran the a axis is

Hba = _ Haa (3.2)

The decoupllng conditions given by Equations 3.1 and 3.2 are inde-

pendent indicating that theoretically it is possible for the human

operator to decouple the b axis from the a axis and not decouple the

a axis from the b axis or vice versa.

In the investigation of the operator ts performance in cross

coupled tracking systems, the control tasks were designed to possess

various degrees of cross-coupllng. The control tasks are described

in detail in Section 3.3.
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Experimental Design

Experimental Outline

A training and performance experiment was perfonT,ed on a

two-axis manual control system with input coupling. The human

operator performed a comp_satory tracking task by using a finger

tip controller to minimize the tracking error presented to him

as a spot on a CRT display. Both asymmetrical and syn_etrical

input coupling was used. The experimental objectives were to

obtain data for study of the following problems:

l) Evaluation of the effect of training and task difficulty on

tracking performance.

2) Determination of human pilot models.

3) Evaluation of the effects of cross-coupled plant dynamics

on the human pilot models.

_) Comparison of uncoupled and coupled tracking systems.

The plant dynamics were of second-order form and consisted

of a pure integration plus a first-order lag with a time constant

of 0.3 seconds. Four control configurations with various degrees

of cross-coupling were used where the cross-coupling dynamics were

of the same form as the main control dynamics.

Input signals to the two-axis compensatory tracking system

were obtained by filtering the output of a gaussian noise genera-

tor with a third-order filter operating with a cutoff frequency of

1 radian per second. The input spectrum was augmented with an

additional spectrum extending to lO radians per second with its

power level 30 db below the primary spectrum. This secondary

spectrum was generated from the same noise source using a first-

order filter. Separate noise generators were used for generating

the two input signals to guarantee zero linear cohermuce between

the two disturbances. The magnitude of the input signal was main-

tained at 3.5 cms R_ deflection on the CRT display.
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3.3.2

The experimental design was a complete factorial with the

factors being subject, control task, and task replication. Three

subjects with previous tracking experience were used and four

control tasks were investigated. The experiment consisted of

three trainin Z sessions followed by a fourth and final performance

session. In a given session, each subject performed four replicates

of each control task. The order of the control tasks was randomized

for each subject and each session. For training purposes, perfor-

mance measures were reported to the subject upon completion of

each replication. Each replication _s of 2.5 minutes duration and

only the central 2 minutes were scored.

Task Definitions

Since input cross-coupling was the principal phenomenon to be ex-

amined, the tasks were designed to exhibit various degrees of cross-

coupling ranging from the no-coupllng level to the symmetrical coupling

level. In the notation below, the subscript a refers to the horizontal

channel while b refers to the vertical channel. Only the plant dynamics

are shown.

Task 1 No-C ouplins

G

Ya 6 _ a_K c a

b c

Yb" _ b

o o 5.2s(O.3s + i) = G

Task 2

Figure 3-2 P!ant Dynamics for Task 1

Asymmetrical Couplin_

G

Y a __c

- a

Yb bc

a

= -G = -_.2
Gba s(O.3s + i)

Plant D_namics for Task 2
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Task3 Symmetrical Coupling

3._

Ya. _ c a Gba =-0.75G = -_'9

%b o.75G 3.9s(O.3s + i)

Yb_ _ _ Cb
G

figure 3-$ Plant Dynamics for Task

Task4 As_etrical Coupling

Task 4 was identical to Task 2 with the exception that the input

signal rb in the vertical axis was zero• This task was designed

to determine if the human operator could decouple the b axis from

the z axis when the input disturbance to the b axis was zero.

Approximate _iodel Determination b_ a Model Iv_tching Technique

The human operator response data obtained for the cross-

coupled tasks outlined in Section 3.3 was analyzed using the

iterative model matching technique described in Section 4.3.

For each of the four control tasks, the hum_] operator ts perfoz_-

ance was modeled by an asymmetric lattice filter as shown for

the two-axis input coupled tracking system in Figure 3-1. It

was assumed that if each filter element was of linear second

order form, then the lattice filter model would adequately des-

cribe the tracking behavior of the human operator provided the

proper filter parameters were chosen. Specifically, each filter

element was described by an equation of the form

o. • •

z + alZ + a2z = _3x + a_x (3.3)

where x is the element input, z is the element output and al

(i = 1,2,3,A) are the differential equation parameters to be

determined.

Equation 3.3 may be transformed to the complex frequency

domain and rewritten in describing function notation as

K(TlS + i)
= (T2s + l)(T3s + i)
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where s is the Laplace operator, K is the zero frequency _ain

and T i (i _ 1,2,3) are the describing function time constants.

Individual determination of the lattice elements using closed

or open loop formulations of the model matching tec_nqique is

impossible because of the coupling between the two control axes.

However, approximate determinations are possible for each control

task if executed in the following manner.

TASK 1

Representation of the human operator by a lattice filter

leads to the following signal flow diagram for the Task 1 plant

d_amic s o

-1

r %
-1

Signal Flow Diagram for Task 1

The describing functions Haa and Hbb may be determined approximately

using the closed loop formulation of the iterative model matching

technique 8s described in Sectica _.3. Signals raand Ya would

be used to obtain Haa while r b and YbWOUld be required to obtain

Hbb. In the determination ofHaa , the signal Ya in addition to

being a function of Haa , is also a function of Hba , Gbb and Hab

because of the coupling functions Hba and Hab. Thus Haa may

only be approximated. However the approximation may be quite good

if the combined effect of Hba , Gbb, and Hab substantially attenu-

ates the signal x . Since the plant d_namics are not coupled
a

in Task l, it is probable that the human operator will not intro-

duce appreciable cross-coupling and consequently accurate deter-

mination of Haa and Hbb could be made.

*h_le relative merits of open and closed formulations are discussed
in Section 4.3
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Describing function Hab and Hba may be deter_led in an open

loop manner using the signals Xb, Ya and Xa, Yb" Again the deter-

minations are approximate because of the cross-couplingo

TASK 2

Figure 3-6 shows the signal flow diagram for Task 2. Again

the elements Haa and Hbb may be determined approximately using a

closed loop formulation. However, the element Hab may be deter-

mined in a closed loop manner by closing the loop through the

plant coupling function Gba and the b axis feedback path. Note

that the zero frequency gain of Hab must be negative for stable

operation. An open loop formulation was used to obtain Hba.
-1

Haa Ya Gaa _ c
_ _ _ -- a

-1

Figure 3-6 Signal Flow Diagram for Task 2

For this task, the elements Haa and Hbb were determined

using the closed loop formulation as for Task l, while the ele-

meets Hab and Hba were obtained using the closed loop technique

as for Task 2. No stability problem arose in the determination

of _a as Gab had a positive zero frequency gain.

The elememts were determined in the same manner as outlined

for Task 2 except that _b and Hab could not be determined since

the excitation signal rb(t ) was zero.

-5.2
* In this task Gba = _O.3s+l)
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Approximate determinations of the describing functions were ob-

tained by using the iterative model matching technique described in

Section 4.3. The iterative technique employing a finite difference

calculation for the sensitivity coefficient was used. Table 3-1 shows

the operational constants used in the analog computer implementation of

the technique. In all determinations the iteration interval was 1.5 seconds.

A comparison between the approximate models and the correct models was

made for one subject (Section 4.8) and yielded close agreement, thus indi-

cating that the approximate models obtained were satisfactory. Typical

time histories of the human operator_ s parameters for Tasks 2 and 3 are given

in Appendix C.

Table 3-1

Operational Constants for the Iterative Model _tching Technique

Task and Describing
Function

Parameter

Adjustment
Gains

Parameter

Offset

_dmum

Parameter

Correction

Per Iteration

k 1

k 2

5
k 4

_2

_2

%
_4

Initial

Paramet er

Value s

_i0

_20

%0
_40

All Tasks Task 2 Hab

Haa _ Hbb

1

3

0.5

3

2O

120

2O

6O

Task 3

Hab _ Hba

5O

3oo

25

150

1

3

0.5

3

12

22

7

2

m

Task i

Hab

25

15o

12.5

75

1

3

0.5

3

1

2

1

1

Task i

Hba

10

6O

1

3

0.5

3

1

2

1

1

m

5

30

Tasks 2 _ 4

Hba

8

16

lO

15

I0

2O

4

4

32

i0

4

lO

60

5

30

1

3

0.5

3

1

2

1

1

lO

16

6

18
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3.5 Prediction of Human Trackln_ Performance

Using the decoupling equations derived in Section 3.2 it is

possible to e_press the coupling describing functions Hi i in terms

of the coupling functions Hii for the case when the human operator

is able to decouple the system and not generate appreciable noise

signals (na, nb) in the process. Since the operator will neither

be able to decouple the system completely nor generate zero noise

signals, the relations between Hij and Hii will at best be approxi-

mations. However an a priori _owledge of human performance in

cross-coupled systems would be valuable in design of such systems

even though the prediction would be an approximation.

The following predictions of human performance may be made

for the control tasks specified in Section 3.3.

Task i G b = Gba = 0, Gaa = Gbb = G

Gab = 0
Hab = - nbb

Task 2, 4 Gab = O, Gba = -G, Gaa = Gbb = G

Hab = 0

Hba = Haa

Task 2_ Gab = 0.75G, Gba = -0.75G, Gaa

Hab = -0.75 Hbb

Hba = 0.75 Haa

= Gbb= G
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Examination of the human coupling describing functions Hij indi-

cates that they are simply related to the uncoupled describing

functions Hii. Since the relations are simple for all tasks except

Task 3, the human operator could be expected to decouple the system.

Task 3 is difficult to decouple since the operator must introduce

a 180 degree phase shift in generating Hab. The discussion in

Section 3.7 will in fact show that the human operatorts performance

in coupled two-axis tracking can be predicted with a fair degree

of accuracy.

In order to visualize the manner in which the operator should

ideally decouple the system, the control problem may be treated

as a transformation of coordinate axes. For the control tasks

investigated, the coupling transfer functions of the plant dynamics

differed from the uncoupled functions by multiplicative constants.

Ideal decoupling required that the coupling describing functions

of the human operator be similarly related to the uncoupled des-

cribing functions. Consequently the ideally decoupled system may

be represmuted by the signal flow diagram shown in Figure 3-7. In

this diagram _i represents the multiplicative constant of the

human operator and KGi represents the corresponding constant in

the plant dynamics. If matrix notation is used, then the system

block diagram may be represented as sho_ in Figure 3-8 where

r m

for Task i

for Tasks 2 and 4

for Task 3
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Decoupling requires that the matrix product GcH C be diagonal. Thus

the elements of HC have the following values:

HC = I_ _I Task i

E-i]= .75 Task 3

Physically the decoupling process may be considered as a

transformation of axes. Assume the system is decoupled and use the

unit vectors a and b to specify the error signal x. In generating

the signal y, the human operator must transform these vectors to a

new coordinate system whose unit vectors are a' and b-_. The new

vectors must be related to the a and b vectors such that the

signal y is transformed back to the original coordinate system

when operated mu by the coupling matrix GC.

Since Task 1 possesses no cross-coupllng, the transformation

between the unit vectors is one to one, i.e.;

a t = a and t =

For Tasks 2 and _, the transformation may be derived by consider-

ing the matrix operations on the vector y. Specifically

or

._ .._ b_ Ya t_t Yb t_ty - ya a + y - +

.

But

[;;]= HC

UYb,J
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Thus for Tasks 2 and

or

Consequently the transformation equations are

a'=a+_

t = b

Similarly the transformation equations for Task 3 are found to be

a' = a +0.75 b

b' - -0.75 _ +

Figure 3-9 illustrates the transformation equations for Tasks i

through @. If, for example, the operator observes the displayed

error stationary at position A, he ideally would move the control

stick to position B to null the error. If the human performs in

this manner, he will be able to decouple the system.

49



r a
C

rb

<:

1
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Figure 3-7 SiKnal Flow Diagram of Decoupled S2stem

Figure _-8 Matrix Block Diagram of Decoupled System
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3.6 Effect of Training and Task Difficulty on System Tracking Error

The root mean square value of the system tracking error was

used as a criterion to evaluate training and task difficulty.

Normalization with respect to the input signal was not done since

the input signal was held approximately constant. Specifically an

RMS error score was calculated for each axis in each of the task

replications. Each score was obtained from the integral of the

square of the error signal over the 2½ minute run:

½

S x2d
0

The RMS errors were averaged over the three subjects and

plotted as a function of replication number in Figures 3-10 and

3-11. Training is evidenced by the downward trend of the scores

with increasing replication number. Examinatica of the learning

curves shown in Figures 3-10 and 3-11 yields the following

observations on the effect of training and task difficulty on

system tracking error.

i) In the first few replications, the lower error scores are

found in Task 1 in both axes and Task 2 in the a axis. These are

the axes in which cross-coupling has no effect. Since the subjects

had been previously trained in two-axis uncoupled tasks, they were

initially able to perform these better than the new cross-coupled

tasks.

2) Task 3, a symmetrical task, has error scores of approximately

equal magnitude in each axis, whereas Task 2, an a_etrical task,

results in markedly different errors. In fact, the error score

for Task 2 in the b axis is greater than any other score, indicating

that this was the most difficult task.

3) Task 4 is one in which there is no input signal to the b axis.

The only input to the b axis error was cross-coupling from the a

axis. The low RMS error score in the b axis indicates the ability

of the subject to learn to remove the effect of the cross-coupling
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and reduce _the error signal in that axis. Note that training was

most pronounced for this case. The error in the & axis is about

that of the a axis of Task 2, the task with the same configuration

but inputs in both axes.

_3



TASK 2

TASK 3

I

TASK 1

i 2 3 _ 5 6 7 8 9 l0 ll 12 13 l& 15 16

Replication

Figure 3-i0 Learning Curves for the a Axis

74

A



1 2 3 4 5 6 7 8 9 i0 ii 12 13 l& 15 i_

Heplication

Figure 3-11 Learning Curves for the b Axis
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3.7.2

Effect of Cross-Couplin_ on Human Performance

Introduction

Approximate human operator models were obtained for the final

performance session of the cross-coupled experiment using the

iterative model matching technique. The average second-order

describing functions determined are tabulated in Table 3-2 as a

function of control task. Figures 3-12 through 3-15 show the

corresponding Bode diagrams for these tasks. Comparison of the

frequency response data with the prediction of human performance

made in Section 3.5 leads to the following results.

Results

Figures 3-12 and 3-13 indicate clearly that the average

describing functions Haa and Hbb were essentially identical for

all control tasks investigated. It may be concluded that various

degrees of cross-coupling in the plant dynamics do not affect

the humants major describing functions Haa and Hbb. However the

describing functions Hab and Hba are related to the degree of

cross-coupling. Specifically the following relations were found.

Task 1

The control dynamics in Task 1 were uncoupled and theoretically

the human operator should not introduce any cross-coupling (i.e.,

ideally, Hab = Hba - 0). Figure 3-1/+ indicates that IHablis down

lO db from IHbbl(Figure3-13). The zero frequencygain of Hba

(Figure 3-15) is down 19 db from IHaal (Figure 3-12) while the

response around 6 r/s is of the same order as IHaal. This latter

result indicates that the operator did not perform as predicted.

Task__.___2

To decouple this asymmetrically coupled control task, the

human operator must adjust Hab and Hba such that

Hab = O

Hba = Haa
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Figure 3-1_ shows that IHabl is 25 db down with respect to [Hbb I

and thus IHab I may be considered zero for all practical purposes.

The comparison of IHba I and IHaa I shown in Figure 3-16 indicates

that IHba I closel_ resembles IHaa I and consequently the operator

was essentially able to decouple the system. Since the magnitude

of the frequency response for IHbal was consistently greater than

the response for IHaal (Figure 3-16), it was concluded that the

operator overcompensated for the decoupling required.

Decoupling of the syn_netrically coupled task requires that

the human operator choose Hab and Hba such that

Hab = -0.75 _b

Hba = 0.75 Haa

Since the amplitud4 ratio of Hab (Figure 3-1A) is down 21 db

from IHbbl, Hab may be considered zero for all practical purposes.

The amplitude ratio of Hba (Figure 3-15) does closely resemble

IHaa I between 1.5 and IO r/s, but at frequencies below 1.5 r/s

the resemblance no longer exists. Thus the human operator chooses

IHbal as predicted over the frequency bandwidth indicated but is

unable to properly choose IHabl.

The deceupling equations for Task 4 are identical with those

for Task 2 since the plant dynamics of the two tasks are equal.

Compari_n of.Hba and Has (Figure 3-16) indicates that the two

Bode diagrams closely resemble each other and consequently the

operator behaves as predicted. The difference in zero frequency

gains for Task 4 is only 3.8 db while for Task 2 this difference

was 7.4 db. Note that the phase curves for Task 4 are also more

identical than in Task 2. Thus the prediction was much better

for Task 4 than Task 2. This was attributed to the fact that rb

was made zero for Task 4 and consequently the task was less diffi-

cult than Task 2. Reference to the RMS tracking error scores in
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3.7.3

Figures 3-10 and 3-11 indicates that Task _ was indeed less

difficult than Task 2. Since Hab was not determined, no infor-

mation was available for comparison purposes. However it is

believed that Hab is essentially zero as was found in Task 2

since the two tasks are so closely related.

Statistical Analysis of Zero Frequency Gain (K)

An analysis of variance test was applied to the obtained

values of the zero frequency gain (K) for the describing functions

Haa , Hbb , Hab and Hba. This analysis was performed to determine

if the differences obtained in these terms were due to differences

in the task or intra- and/or inter-subject variability. The

analysis of variance design was a full factorial using the scores

from the last session of the experiment (Section 3.3). The vari-

ables were the four cross-coupling tasks, the four replicates

of the last session and the three subjects. The subjects were

treated as a random sample from a group of previously trained

subjects and the other variables were treated as fixed populations.

The results of the analysis are shown in Table 3-3 for the

four describing functions. Using the 1% level as the a priori

significance level because of the small sample size, Hba was the

only function showing significant differences between the tasks.

This agrees with the previous analysis of the Bode diagrams in

Section 3.7.2. It should also be noted that Hbb and Hab showed

significant task differences at the 5% level and Hba and Hab

showed significant replicate differences at the 5% level. These

differences are probably due to the small subject variability as

reflected in the subject mean square terms and the subject inter-

action mean square terms of Table 3-3. This indicates that the

three subjects utilized in this task had similar describing

functions for the various tasks. If the subject sample had been

larger it is expected that the 5% level differences would dis-

appear.

DuncanTs Multiple Range Test was applied to the mean values

of K for Hba. This analysis showed no differences between Tasks 1

and 3 or 2 and & but significant differences at the 2% level existed

between these two groupings.
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Table 3-3

Analysis of Variance of Zero Frequency Gain (K)

Degrees of Sum of
Freedom Squares

Mean

H

Task 3 167 55.6

Replicates 3 158 52.7

Subjects 2 269 134.5
TxR 9 67 7.4
Tx S 6 139 23.2

R x S 6 98 16.3

T xR x S 18 157 8.7

<i

Hbb

Task 2 134
Replicates 3 75

Subjects 2 75

TxR 6 33
Tx S 4 16

Rx s 6 59
Tx R x S 12 109

67
25
37.5

5.5
4
9.9
8.4

<i

Hab

Task 3 3Se5 1295
Replicates 3 35 11.7

Subjects 2 58 29
TxR 9 A9 5.4
T x S 6 159 26.5

R x S 6 ]2_ 2.33

T xR x S 18 62 3.45

Task 2 5_
Replicates 3 158

Subjects 2 S
TxR 6 13_
?xS 4 87
R. s 6 5&
T x R x _S 12 I_2

2_
52.7
1.5

22.3
21.8

9
11.8

1.56

11.81-

5.85"

1.89

* Significant at 0.05 level (_}'

** Significant at O,O1 level (l_)
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3.8 Conclusions

Experimental data obtained from a coupled two-axis track-

ing experiment was analyzed by mathematical modeling of the human

operator's performance. The models were used to determine if

the operator could decouple the system. An analysis of variance

was performed to determine the significance level of the zero

frequency gain. Task difficulty and learning were evaluated

using the RMS tracking error. The analysis of human performance

in coupled two-axis systems with cross-coupling led to the

following conclusions:

l) The human operator can essentially decouple the system for

Tasks 2 and 4 according to _2rediction from decoupling

equations which were analytically derived. The decoupling

performance was better in Task 4 than Task 2 due to the

excitation signal rb being zero in Task 4.

2) The human operator was not able to decouple the symmetric-

ally coupled system for Task 3. Decoupling in Task 3 is

difficult since the operator must introduce a 180 degree

phase shift in generating Hab.

3) In Task l, the human operator introduces some coupling in

the form of Hba around a frequency of 6 r/s. This was con-

sidered a transfer effect due to the full factorial design

in which _a was transferred from Tasks 2, 3 and 4 to Task

1.

4. For all tasks, the describing functions Haa and_b were

essentially identical, indicating that various degrees of

cross-coupling in the plant dynamics do not affect the

human's major describing functions Haa and _b"

. Learning was evident for all tasks with Task 2, an asymmet-

rical task, being the most difficult.
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_.2

METHODOLOGY STUDY

Introduction

The objective of this study was to develop refined model

matching techniques which would be capable of precise mathematical

modeling of human tracking performance. Three basic modeling

techniques of the output error category were evaluated where the

primary consideration was identification accuracy of model para-

meters. The three techniques (continuous, iterative, and extra-

polation) were exPerimentally studied by determining their identi-

fication accuracy using second-order systems with known parameters.

In the continuous technique, a modified square law criterion

function was investigated to determine if identification accuracy

could be increased by utilizing a high parameter adjustment gain

when the model matching error was small. To increase the modeling

accuracy of the iterative technique, precise methods of calculating

the influence coefficients were evaluated. First-order extrapo-

lation was used in the extrapolation technique to determine the

effect of first-order prediction on parameter convergence. Model-

ing of higher order model terms by extrapolation was also investi-

gated. Conventional spectral analysis techniques of determining

transfer functions were extended to permit exact estimates of

human describing functions in coupled two-axis tracking systems.

The Continuous Model Matching TechniQue

In general the model matching concept of system parameter

identification is based c_ determining a model which will opera-

tiona!ly match the performance of an unknown system when both the

system and model are excited by the same input signal. In using

model matching techniques, the functional form of the unknown

system equations must be specified or assumed in advance. The

model form is then selected to approximate as closely as possible

Re assumed form of the un_uown system. To permit precise para-

meter identification, the excitation signal should have a band-

width which covers the dynamic range of the unknown system. Theo-

retically the signal input bandwidth must be infinite to obtain

exact identification but in practice this is neither possible nor

necessary. For human operator identification_ either random or

random appearing signals are used.
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Consider the system identification problem shown in FiL_rc 4-1

where H represents the unknown system and I,,I the mode]. Asstune that

the functional form H is of second order and can be dc;_ci'ibed by

"9 + a19 + a2Y-- a3"_+ %x (',._)

_lere

x is the system inpu5

y is the system output

a. (i = i, 2, 3, 4) are constant coefficients.
1

1{ewritin_ Equation (4.1) in operator form yields

a3P + a4 Ix = H(p)x

%

Y = p2 + alp + a2 J
d

where p is the differential operator d--t"

Since M and H are ass1_ed to have the s_ae fo_a, then z is related

to x by the equation

_3 p + (_4

2

p + C_IP + C_2

x = M (p,_)x

x

£

Figure _-I The Model Matching Concept
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where x is the mode] input

z is the model output

is the va_'iable parameter vector

If the modcl matching c±-ror • is defincd by

s= z-y

tl,cn thc model pa±'_u:leters _lill be identical to the system coef-

ficient0 when the 1_del. matching error is zero over the whole

f1"e%ucncy bandwidth of the system being identified. In the con-

tinuous r,'.odel_tchinc technique (i_efe,'ence 5), a criterion func-

tion f _Jhich de t,cnd'_ on the error S .is _in_r_ized by an apg_xir:_%te

,_;i;_:c2c:;£dcsccnl; ,,,el,o<t. dlc c_'iterion function must be l)ositivcly

definite _.l:[t}lC, Unique _:_in:_l_u at g = 0 and _.lith _f/_s >0 for

s>c and _f/_s < 0 for _ <0. A sq_k_re la_._c],:itcrion function satis-

i'ic_; thc.']e l'cqui.t'c_icnts and racy be used in model matching, i.e.

_,= ½_2 ... 0-2)

_le uethod of :;tcepcst descent can be descl'ibed by the

'/( _ (_ lbO _" equation

dt

_.:!_e_'cV,f is £I,c 6]:adicnt of f and

I: is a positive !_ropoi'tionality constant.

Considering only the i'th component of the equation yields

a _ (_.3)
d-_(c%).=-_

Impl_,ent_tion of t_e te_IL_L%_ On an _naJLog computer requires

the generatiOn of the partial derivatives shown in Equation

(!_.3). Performing the dlfferemtlatioa indicated in Equation

(!_.3) yields the restult

_-_-= _ u. (_._)
_i

where the sensitivity coefficient u i is defined by

_z a
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Strictly speaking u i is defined only when the _i are constant.

This restriction leads to a contradiction since, by Equation

(4.3) the product e u i is made proportional to a rate of changc

of G.. In this discussion the rules of differentiation will be
l

applied fo1_ually and the method will be termed "approximate

steepest descent". A more thorou_ discussion of this problem

is given in References 6 and 7. Substituting for the i'th

gradient component in Equation (4.3) and integrating over time

yields the value of the i' th parameter at time t I as indicated

by the equation

t 1

ai(tl) = -k j _u.dt
l

O

The sensitivity coefficients are obtained by solving sensi-

tivity equations. For the i'th parameter the sensitivity equa-

tion is obtained by formally computing the partial derivative of

the model equation with respect to the i'th parameter. The

differentiation takes the following form for the G1 parameter

a-q _+o:2z - _ c3_+a2

Assuming that parameter cross coupling is negligible yields

E1 + _lUl + C_2uI = -_

Solving the sensitivity equation obtained, yields the sensitivity

coefficient ,

uI = i'P - -- " = -Jpz

(p2+ %p + az )

where J is an operator defined by:

1
J=

P2 + _l p + _2

7o



Similarly it _y be sho_cn tl_t

u 2 = -Jz

u3 = Jpx

U_= Jx

Observing that the influence coefficientz are interdependent

gives the following interdependence relations

u I = pu 2

u 3 = pu 4

Since it has been shoxrn that the sensitivity coefficients

may be obtained by solving the sensitivity equations, the con-

tinuous method may readily be implemented on a conventional

analog computer according to the block diagram given in Figure

4-2. Note that the model matching method is continuous in

that the parameters are continually being updated.

In practical applications of the technique it has been

found advantageous for stability reasons to introduce a rate

term into the criterion function in the manner shown below

fl = ½ (5 + q_)2

The error rate coefficient q may be varied from zero to unity

to yield the proper amount of lead required. Use of a lead

term permits more rapid convergence and hence a shorter identi-

fication time. However, like all qumlratic functions, this

criterion function has the disadvantage of a shallow minimtRn.

_is causes a relatively large uncertainty in the final para-

meter values_ since the error criterion in "graetiee does not

register small deviations of the _oar_leters from the theoreti-

cal optimum. An increase of the adjustment gain constant ]<

tends to reduce the uncertainty level but also tends to cause

instability of the adjustment process if the error and hence

the slope of the error criterion is large.
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A modified error criterion having a limited slope for

large deviations from the minim_n was adopted to overcome

this difficulty. _is criterion function f2 and its slope

is shown in Figure }._-3. It can be expressed mathen_tically

by

f2 =
L z

, L 1_+q_V-_-

if -L <s+q_ < L

if l_+q_I> L

Independent choice of the brcaki_0int L, and tile z_te

coefficient q pClznitz adaptation of the error criterion

for optimum model 1.%_tchinc perfom_%nce. For a _iven adjust-

r.lent cain h in ]:qL_tion (_.3) and breakpoint L, the limit of

].:di'/d(_+q_) is dete1_nined from M =k L. If the adjustment
2

cain is inc±'eased and the breakpoint L is decreased such that

}-Iis constant, it i'ollous the criterion function f2 approxi-

:i_tes the abzolubc value criterion

1_'3=.!_+q_I

:_ithout the attendant _)i_l)].ems of switching t'_'ansients at

E-._q_ = 0 end of l-h.liL cycles occul'rinz in the adjustment

loons.

f_

o +L (_)

_f2

M

!

+L

M

k

(_+q;)

Modified Error Criterion f2 and DerivativeFigure _-3 _
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4.3.2

The Iterative Model Matching Technique

Introduction

The continuous model matching technique is mathematically

not precise, since the solutions of the sensitivity equations

(ul) are equal to the partial derivatives 8z/SG i only when the

G. are constant. Iterative techniques overcome this difficulty
l

by holding the model parameters constant during the computation

of the influence coefficients. Following such a confutation,

the parameters are adjusted incrementally.

The time interval (T) during which the parameter influence

coefficients are being computed is one of the variables of the

iterative method. Early formulations of the iterative tech-

nique at TRW Systems (Reference 8) required repetitive process-

ing of the entire data record, as the computation interval was

made equal to the record length. During the present study,

computation intervals of only a few seconds were used, thus

making possible parameter identification during a single proces-

sing of a human tracking record. The formulation of the itera-

tive model matching technique is described in the following

paragraphs.

The Iterative Model Matching Technique

In general the output error form of model matching may be

formulated in either an open or closed loop manner to identify

the describing function of a human operator performing a compen-

satory tracking task. In open loop model matching (Figure 4-4),

the model input is identical to the human operator input, while

in closed loop model matching (Figure 4-5) , the model input is

generated by differencing the reference input and the task dynam-

ics response of the model. It may be shown analytically (Ref-

erence 9) that the human operator describing function will be

inaccurate if determined by the open loop technique for the case

where the human operator output contains an appreciable amount

of noise which is not linearly correlated with the reference

input. In such situations, the closed loop model matching tech-

nique should be used.
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In using the closed loop technique, the human operator is

assumed to behave as a linear second order system describable by

where x is the human operator input

y is the human operator output

ai (i = 1,2, 3,4) are constant coefficients

On the basis of this assumption, the model is constructed to

have an identical form given by

%;",;+ + o%x' '=

where x' is the model input

z is the model output

_i (i . 1,2,3,4) are variable coefficients

The model and human operator outputs are then differenced to

form the model matching error. A steepest descent method

is used to reduce the model matching error to zero and thus

identify the parameters of the human operator.

In the iterative technique, the parameters are updated at

the end of each computation interval by an incremental correc-

tion calculated during the iteration period as shown in the

following equation

where J • j'th iteration interval

I_i(J) m incremental correction in the _i parameter

The incremental corrections for each parameter is calcu-

lated using a steepest descent method which requires that the

incremental change be made proportional to the negative of the

local gradient of a criterion function f. If only the i'th

parameter is considered, then the steepest descent method re-

quires that
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(J) -k 8F(j)
Ia i : _._

i

(4._)

where k is a positive proportionality constant.

For the iterative technique, the criterion function has the

form

.(j+1)_

F = 1_ _ 2dt

jT

where T is the length of the iteration interval. The rate term

(qe) used for stabilization in continuous model matching is not

needed here since the parameter adjustment loop is not closed

during computation of the incremental correction.

If the partial differentiation indicated in Equation (4.5)

is performed, then the following integral equation is obtained

for the calculation of the incremental parameter correction

(j+z)T
_z

Io(i(J) = -k _ S _i dt

jT
8z

The influence coefficient _ = u i is implemented directly

on an analog computer by the finite difference approximation,

__ AZi z(_i + AGi)-z((_i) _i - zi

ui -- _. - AG. - _.
i i i

The term _i is generated by using a perturbed model.

G_ parameter, _I is given by

O(_P+ a4

q - z
+ (o(i+ _i )p+ °(2

For the

Similar perturbed models are used to generate the perturbed

model outputs _ for the other parameters.

The closed loop iterative model matching technique was

implemented on an analog computer as shown in Figure 4-5. An

open loop formulation of the iterative technique is shown in

Figure 4-4 for comparison purposes. An experimental study of
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the iterative technique was performed on systems with known

parameters and the results are presented in Section 4.5.2.

It is also possible to calculate the influence coefficients

in the iterative technique by solving sensitivity equations.

These equations were derived in Section 4.2 for the open loop

formulation 8_d are repeated here for convenience;

u I = - Jpz

u2 = -Jz

u_ = Jpx
D

u_= Jx

where J =
1

2

p +%p+%

Since the _ parameters are held constant during the computation

interval, it follows that J now becomes only a function of time

and consequently the influence coefficients _y be determined

exactly. In theory this method of influence coefficient deter-

mination is superior to the finite difference method as the

latter method approximates the true partial derivative by a finite

difference approximation. Hence the iterative technique employ-

ing this type of influence coefficient determination should pro-

vide better system identification accuracy. A block diagram of

the open loop formulation is shown in Figure 4-6. The experi-

mental study performed on this method is described in Section

4.5.2.

The iterative technique utilizing sensitivity equations

for influence coefficient computation may also be formulated in

a closed loop manner. Figure 4-7 illustrates the closed loop

model matching concept where H is the unknown system element

and M is the model of that element. The influence coefficients

are determined by solving the influence equations of the element

M. If the model M is describable by

,!

m_

then it may be shown that the influence coefficients are
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u I - -Jpz + M

u 2 -- -Jz + M _2

u 3 = Jpx + M B_ 3

_X t

u4 - Jx + M _44

_z (i _-1,2,3,4)
where u i = _

1

J- i

2

P + _I p + G2

The partial derivatives of x' with respect to _i may be related

to the influence coefficients in the following manner.

Since the signal x' is defined by the equation

!

X I = r - c

it follows that

3x' _c' (i 1,2,3,4)

1 i

as r is independent of _i"

tion

c' Gz

then

Because c' is defined by the equa-

8c' 8z
--G _ Gu. (i = 1,2,3,4)

Consequently the required relation is given by

: _u i (i : i,z,3,4)
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Theinfluence coefficients cannowbe written in the following
simplified form,

-Jp
Ul_ I+MG z

u 2 : -J z
i +MG

u_ : Jp x'J
I+MG

u 4 = J x'
I+MG

As in the open loop case, the influence coefficients are inter-

related by the equations

u I : PU 2

u 3 = Pu 4

The closed loop iterative technique may now be readily imple-

mented on an analog as shown in Figure 4-8.

H Y

M

+

c

Figure 4-7 The Closed Loop Model Matchin_ Concept
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4.4.2

The Extrapolation Technique

Introduction

One of the difficulties of the continuous model matching

technique is that the gradient cannot be defined in a rigorous

manner unless the parameters are constant. This problem is not

present in the iterative technique, where the parameters are held

fixed during each iteration interval and thus the solution of

the sensitivity equations yields well defined gradient cc_ponents.

In contrast with the instantaneous criterion function of the form

f = i [g(t)]2 used in the continuous method, the iterative tech-

nique uses an integrated criterion function of the form

ti+TF = ½ [g(t)] 2 dt

t
i

Evidently, while f depends on the time history of the parameters,

F depends only on their value during the i-th iteration interval.

The extrapolation technique presented in this section is

based on a first-order extrapolation of the matching error. As

a result, the criterion function becomes an ordinary, algebraic

function of the parameters (i.e., f depends only on the instan-

taneous values of the a and not on their entire history), and
i

the gradient vector V f can be rigorously defined. The resulting

strategy is again iterative, even though an instantaneous criterion

function is used.

The Extrapolation Technique

Consider the parameter identification problem shown in Figure

h-1 where H represents the unknown system and M the model. The

model output z may be expanded in a Taylor's series about the

initial conditions a. as
IO

z(ai,t ) = Zo(t ) + _ Uio(t ) 6ai(t ) + higher order terms

i

8#



where

= _.
i0

_z(ai't) I
Uio(t)_ _i(t)

_i = aio

The extrapolated parameter values are obtained from

ai(t): aio + _i(t)

where the increments 6ai(t ) are calculated using a steepest

descent method. Note that the computation of Uio is theoretically

exact since the model parameters are held fixed at their initial

values.

Using the first two terms of the expansion for z yields the

first-order extrapolation

Zl Zo Uio i

i

The corresponding first-order extrapolation for the model matching

error is

= = + > 6aieI zl-Y eo Uio
1

m

where s° Zo-y

If the square law criterion function

f = ½Sl 2
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is used, then the method of steepest descent can be used to compute

the parameter increment s 6ai which minimize f. The required

equations are

d 8f

---k , i --1,2,...n.

The gradient components may be evaluated as

8f _I

assuming that cross-coupling terms are zero. Consequently the

quantity 5_i(t ) may be evaluated from the integral equation

to+t

_i(t) = -k ) _lUiod_ (4.6)
t
o

The integration shown in ,Equation &.6 may be performed until

6ai reaches a steady state value at which time the initial con-

ditions _io may be updated by the amount 6ai. Another integration

is then performed and the process is repeated iteratively until

the steady state value of 6ai approaches zero. Figure _-9 illus-

trates the analog computation impl_nentation for the case where

the system H may be represented by a second-order equation of

the same form as discussed in Section &.2.
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i

Effect of Excitation Bandwidth on Parameter Identification Accuracy

_.5.2

Introduction

The accuracy of parameter identification of unknown systems

by a model matching technique is primarily determined by the fre-

quency bandwidth of the excitation signal. Inadequate excitation

bandwidth generally results in poor parameter identification

accuracy. A bandwidth study was performed on the model matching

techniques described in Sections 4.2 through 4.4 to obtain a quan-

titative measure of the degradation in system identification

accuracy due to insufficient excitation bandwidth. The secondary

consideration in the study was a comparison of the different model

matching techniques with the ultimate goal being the selection of

an optimum technique.

Procedure

The study was performed by identifying the parameters of a

second-order linear system with known parameters. Band-limited

white noise was used as the excitation signal to the system. This

signal was obtained by filtering the output of a gaussian noise

generator with a third-order filter of the form

F(s)=
(s + _f)(s 2 + 0.8 *fs + _f2)

Filter cutoff frequencies, _f, of 20, 3 and 0.4 rad/sec were used

in the study. The study was conducted using the the systems A

and B whose transfer functions and Bode diagrams are shown in

Figure 4-10. The transfer functions of system A and B were chosen

to approximate typical human describing functions obtained in

modeling human tracking response. Continuous, iterative and extra-

polation model matching techniques were evaluated. Both open and

closed loop formulations were used in evaluating the iterative

technique. Open loop formulations only were used in investigating

the continuous and extrapolation techniques.

88



GR.]_ (db)

C)

iiii

!!!!
Illl

III

i
rill

FII
iill
[tll

I ,

:ii
ll;r
I I I ;

111I

I I

!!!*/
ll, i i
: i i :

ii
ft t,

l| I-

Ll J

i i i

i Jl

i_lit

kll[ t
JK!_I

Ittl

t tl
tll-t

--HH

N
!

o
+)

0

In

O

_.,1|

._.q!

89



4.5.3 The Continuous Technique

The continuous technique described in Section 4.2 was imple-

mented on an analog computer in an open loop formulation and used

to model the known systems A and B. The modified error criterion

function was used. Use of unequal parameter adjustment gains k.
i

substantially decreased the convergence time. That is, the para-

meter adjustment rates were equalized by increasing the adjustment

gain of the less sensitive parameters. Parameter convergence rates are

analytically treated in Reference 12. Table 4-1 lists the operational

constants used for the continuous technique where these constants were

chosen to yield the optimum convergence time. Initial conditions for

the parameters aI through m4 were 10, 20, 4 and 4 respectively.

Table 4-1

Operational Constants for the Continuous Technique

Input Bandwidth

,(rad/sec) .

Adjustment Gains

Limit on Error Term

+ qs

k1

k2

k3

k4

System A

20 3 0.4

S 2 4

40 4 8

2o 4O lO

i00 4O i0

i0

System B

2O 3

2 0.5

i0 1.0

5 I0

25 lO

Error Rate Gain q 0.5 sec

Oe_

4

8

2O

2O

Each system was identified twice for each excitation frequency

and the model parameters measured at the end of the model matching

run. The m parameters were then averaged and converted to transfer

function form. Percentage errors were calculated and these are

tabulated in Table 4-2. In general the overall identification

accuracy increased as the excitation bandwidth increased. The

accuracy of the zero frequency gain parameter K was least affected

9o
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4.5.4

by the change in bandwidth. However the error in the damping ratio

parameter C increased sharply as the excitation bandwidth was

decreased, indicating that there was insufficient energy at the

vicinity of the poles to adequately define the damping ratio for

low excitation bandwidths. It was concluded that excellent identi-

fication accuracy could be obtained if the excitation bandwidth

was 20 rad/sec. This bandwidth is beyond the highest break point

frequency in the Bode diagrams for systems A and B shown in

Figure 4-10.

The Iterative Technique

The iterative technique described in Section 4.3 was experi-

mentally studied by modeling the known systems A and B in both

open and closed loop formulations. For this study of the iterative

technique, the influence coefficients were computed by a finite

difference approximation as discussed in Section 4.3. Unequal

parameter adjustment gains ki were again used to equalize the

adjustment rate of the parameters. In addition the maximum para-

meter correction per iteration was limited to reduce cross-coupling

during parameter convergence. Specifically the maximum parameter

corrections per iteration were limited to i, 2, i, i for parameters

ml through a4 respectively. Table 4-3 lists the operational con-

stants used for the iterative technique where the constants were

chosen to give an optimum convergence time.

An identical experimental procedure to the one described in

Section 4.5.1 was used to obtain the identification accuracy of

the technique. The identification accuracy of the open loop formu-

lation is comparable to the open loop formulation of the continuous

technique as shown in Table 4-2. However, the iterative technique

possessed a shorter convergence time.
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Table 4-_

Operational Constants for the Iterative Technique

Syst e_

Input Bandwidth

(rad/sec)

k1

Parameter Adjustment k2

Gains
k3

k4

A

2O

8

96

4

24

Open Loop

3

8

I
48

Closed Loop

B

Parameter Offset

A_I

_2

m4

o.4

2.4

0.2

1.2

Initial Parameter

Value s

mlO

a2o

a40

lO

20

4

4

Iteration

Interval_ T

2O 3 2O 3 2O

8 8 28 28 28

1
48 48 168 168 168

4 4 4 14 14 14

24 24 24 84 84 84

0.4 0.4 0.4 0.4 0.4 0.4

1.2 1.2 1.2 1.2 1.2 1.2

0.2 0.2 0.2 0.2 0.2 0.2

1.2 1.2 1.2 1.2 1.2 1.2

lO 10 lO 16 16 16

20 i20 20 32 32 32

4 4 4 4 4 4

4 4 4 4 4 4

le5 secsle5 secs

3

lO

6o

4

30

0.4

1.2

0.2

1.2

16

32

4

4
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In the closed loop formulation, the identification accuracy

was much poorer than for the open loop case as shown in Table 4-2.

The cause of this inaccuracy may be explained by comparing the

system transfer functions of an open and a closed loop system

(Figure A-7). For an open loop system, the system function is

Y=H

]C

while for the corresponding closed loop system, the system function

is

Y H

r 1 +GH

In considering the frequency response for those frequencies for

which the magnitude of GH is significantly less than unity, the

transfer function will be approximately

Y
=H

which is the open loop transfer function. For those frequencies

for which the magnitude of GH is significantly greater than unity,

however, the transfer function will be approximated by

Y H 1

This function gives no information about the nature of H, the

system which is to be determined. Consequently H may only be

determined accurately when the magnitude of GH is significantly

less than unity.

For the closed loop system studied, the plant system function

was

G(s)- , 5.2
s(O.3s + l)
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Thus, for low frequencies the magnitude of GH will be greater than

unity, and for high frequencies, less than unity. For typical human

responses the crossover frequency is about 4 rad/sec. It is to be

concluded that the low frequency parameters, K and T1, cannot be

accurately determined by the closed loop method. The computer

results in Table 4-2 indicate that this is the case.

In addition to the accuracy problem discussed above, the

closed loop method also has the disadvantage of producing instability

in the closed loop of the model and plant dynamics. Instability will

result if during the adjustment process the model parameters ass_ne

values such that the phase margin becomes negative. This form of

instability has frequently been observed in modeling of human data.

The iterative technique utilizing sensitivity equations for

true influence coefficient computation was also eXPerimentally

studied. This technique is described in Section 4.3 and in this

study the open loop formulation was used. Unequal parameter adjust-

ment gains and limiting of the .maximum parameter correction per

iteration were again employed to optimize the performance of the

technique. Operational constants used for this technique are shown

in Table 4-_. For the parameters _l through _4 respectively, the

initial conditions were 16, 32, 4, 4 and the maximum corrections

per iteration were l, 2, l, and 1.

Table 4-_

Operational Constants for the Iterative Technique

Usln_ True Influence Coefficients

Bandwidth Cutoff

Fr_uenc_ (rad/sec)

Adjustment Gains

k1

k2

k3

k4

Iteration Interval

System A System B

2O 3 2O 3

iO iO 5 5

2OO 40 4O 2O

iO iO 5 5

lo io io 5

1.5 sec
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Output

-y (deg)
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Output
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0

-25

i0

0

-I0

i0

0

-i0
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lO
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_2
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0

_3
lO

0

_4

Figure 4-.ii
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o zo 2o 30 40 _o so 7u

time (eec)

Typical Parameter Time History for the Open Loop Itera-

tive Technique Using True Influence Coefficients
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4.5.5

The identification accuracy of the technique was determined

using the experimental procedure described in Section 4.5.1.

Table 4-2 shows that the identification accuracy obtained was

excellent. The convergence time was in the order of 30 seconds.

A typical parameter time history is shown in Figure 4-11.

The Extrapolation Technique

The extrapolation technique as described in Section 4.4 was

formulated in an open loop manner and experimentally studied

using the known systems A and B. Unequal parameter adjustment

gains were used to equalfze the adjustment rates of the parameters.

Using the same initial conditions as in the tests of the iterative

technique resulted in an unstable set of parameter corrections

6ai. However if the initial conditions were sufficiently close

to the true parameter values such that an accurate extrapolation

could be performed, then stable parameter corrections 6ai were

obtained. Consequently the technique was studied by using the

same initial conditions as for the iterative technique but limit-

ing the computation interval to 5 seconds to maintain stability•

Operational constants used in studying the technique are shown

in Table 4-5. The initial conditions of the parameters al through

a4 were 16, 32, 4 and 4 respectively.

Table 4-_

Operational Constants for the Extrapolation Technique

S=Lr,& :lt C=tol:l: .
Frequency (rad/sec)

k1

Adjustment Gains k2

k3

k4

Iteration Interval

System A
n,

2O 3

50 40

400 /400

50 40

5O 40

5 sec •

System B

2O 3

50 2O

4OO 8O

50 i0

50 i0
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_.5.6

The identification accuracy of the technique was determined

using the experimental procedure described in Section 4.5.1.

Table 4-2 indicated that the identification accuracy was good. A

convergence time comparable to the iterative technique using the

theoretically exact influence coefficients was obtained.

Closed Loop Model Matching With Prefiltering

In Sections 4.5.3 through 4.5.5 it was shown that the accuracy

of system identification was poor if the excitation bandwidth was

insufficient. Manual tracking systems are commonly analyzed

using disturbance functions consisting of a very narrow primary

spectrum whose level is much greater than the level of a much

wider secondary spectrum. Since the narrow primary spectrum is

dominant, then the accuracy of system identification will suffer

due to insufficient excitation bandwidth. This inaccuracy was

measured for a known system using the same excitation signal as

was used in the experimental design described in Section 3.3.

The excitation signal shown in Figure 4-12 was generated using

a gaussian noise generator and appropriate filters. A known system

(System A) with a transfer function similar to that of a human

operator was implemented on an analog computer. Using the iterative

technique with the finite difference influence coefficient calcula-

tion and the excitation signal shown in Figure 4-12, the parameters

of System A were identified with the accuracy shown in Table 4-6.

These accuracies are unacceptable for model matching. To overcome

this dilemma, the excitation bandwidth to the model matcher was

increased by prefiltering.

Figure 4-7 of Section 4.3.2 illustrates the basic closed

loop concept of model matching. If the input signals to the model

matcher are prefiltered by a filter F to increase their bandwidth,

then the model matching scheme illustrated in Figure 4-13 results.

All operations shown in Figure 4-13 are functions of the differential

operator p and all signals indicated are functions of time. The

signals yt and zt are related to the disturbance signal r by the

following equations
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(HF)y' = Fy = i +HG r

zt = QI---_"-MG_ rt = I_l r

Consequently the model matching error is given by

s' = z'-y' -- \x + MG 1

Thus model matching may be performed as before since the error s v

approaches zero uniquely as M approaches H, provided of course that

the signal Fr is non-zero.

The effect of prefiltering on the system identification

accuracy of System A was measured by using the input disturbance r

as before. Acceptable identification accuracy was obtained as

shown in Table &-6. Note again that the parameters K and T 1 are

the least accurate for the same reasons as given in Section &.5.4.

Table 4-6

Effect of Prefiltering on Model Matching Accuracy

System

Parameters

Unfiltered Prefiltered

Percentage Perc entage

Error Error

K - lOA + 11.3

T 1 -1560 - 10.5

- 21 + 0.7
n

C +94 - 3
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4.6.2

Parameter Indeterminacy

Introduction

Parameter indeterminacy difficulties can arise in system

identification by raodel matching techniques. If the excitation

signal bandwidth is insufficient or if the system being modeled

is actually of lower order than the model, incorrect parameters

may be obtained. However 3 the model obtained will be able to

duplicate or match the output of the unknown system and conse-

quently the system identification is unique but the parameter

identification is not. Situations where parameter indetermina_

may arise are discussed in the following paragraphs.

Second Order System with Insufficient Excitation Bandwidth

Consider the second order system equation

"_ + alY + a2Y = a3x + a4x

having the transfer function

a3 s + a 42

s +als + a 2

For input signals of low frequency Equation (4.7) is

approximated by

X_ a3s + a 4
als + a 2

If the known parameters have values related by

a 3 a4 =

a-_ = a 2 CI

Equation (4.7) simply becomes

= C 1

where C is the zero-frequency gain of (4°7).
1

_he corresponding model equation is transformed

similarly into

z (_)_ (_3s+_4 )
X

(_ + a 2)

(4.7)

(4.8)

(4.9)

(4.1o)
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4.6.3

A set of system parameters which are related in accol'dance

with Equation (4.'9) cannot be uniquely identified by model

matching because the requirement

Z(s) = Y(s)

can be satisfied in good approxi_,_tion by any sets of parD-

meters a. related by
l

a 3 a 4

5q = _2 = cl

i.e., the 5-parameters will not necessarily be equal to the

known a-parameters. For high excitation frequencies the

approximations (4.8) and (4.10) are not valid and hence the

indeterminacy of par_uneters _i will disappear.

Figure 4-14 illustrates a plot of model parameters in

the _i' 53 plane and in the _2' 0:4 plane. 'l_e lines _3 =

C151 and 54 = C152 are loci of indeterminate pars_neter pairs.

The _i actually obtained by the computer depend largely on

the choice of initial values _i(O). In practice_ even system

parameters located in the vicinity of these loci can cause

indeterminacy problems on the computer. In the presence of

computer noise, a continuous drift of the parameters along

the loci, or in their vicinity, is to be anticipated.

Second Order S_stem with Inherent Indetermlnac_

Even with sufficient input bandwidth a parameter in-

determinacy condition is possible. If the known parameters

have values related by

aI --

Equation (4.7)

a2a 3 a4

a 4 a 3

reduced to

= J

s .:- a2a _

1D3



4.6.4

Model matching will only be able to develop the relationships

(_3 = a3

(74 = a4

_2 a2

O_I = 0_2C_3 + Cz4

% _3

_lus, only _3 may be determined uniquely.

First Order System with Inherent Indeterminacy

A similar problem of para_neter indeterminacy can also

arise in a first order model r_tcher. If the system and

model equations are given by

+ blY = b2_ + b3x

+ fBlZ = IB2_ + _3x

having the transfer functions

and

Y (s) (b2s + b3 )

=(s + bl)

z (s) = (ozs+ _3"
(s + _i )

respectively 3 parameter indeterminacy will occur in model

retching if the system parameters are related by

b3 =

b2 = b--_-- C2

In this singular case the transfer function is frequency-

independent l_ving the gain C2 at all frequencies.
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4.6.5 Excitation with Sin_l e Fre_uenc_ Sinusoid

A parameter indeterminacy will arise in the modeling of

any system if the excitation signal is a single frequency

sinusoid. For example, if a second order system is being

modeled, then only two of the four parameters may be uniquely

determined. A complete discussion of this type of indetermi-

nacy may be found in Reference 5.

5 3

O

/

C_ = CIC_1
3/
/

/

/
/

/

i (o)]
/

/

/ /

d

/

/
/

t

/
t

/
/

/

0 _2

Figure 4-1A Loci of Indeterminate Parameter Pairs in ml, =_

and a 2, a_ Planes
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L_.7.2

A Matrix Formulation of the Spectral Technique for the Coupled System

Introduction

Selected portions of the experimental performance data were

analyzed using spectral analysis techniques to obtain an independent

identification of the human operator's frequency response. Since

the spectral technique used in this analysis contains no approxi-

mations of the type made in using the iterative model matching

technique, then the accuracy of the frequency response obtained will

be primarily limited by the number of lag values and data points

used in the digital spectral analysis.

The Spectral Analysis

In the two-axis input coupled tracking system shown in Figure

&-15 an asy_netric lattice filter is used to represent the human

operator. A spectral analysis is required to uniquely determine

each of the four elements of the lattice filter model.

ra 1

rb i

-1

L " lIIaa Ya Gaa Ca
•

I i 1xb l_b Yb Gbb Cb

-i

FiL_re 4-15. SiGnal Flow DiaCr_n of the Two-axis Input Coupled System
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The two-axls system configuration depicted in Figure A-15

may be simplified by representing the human operator model and the

plant dynamics by 2 x 2 matrices as shown below.

S I

ilb_ Hab

Similarly the signals of the system may be repres _nted by the

following vectors:

r = Irll x-- [XalsxbJ Y = I:Yl n=b Inbl c = ECJc

The system shown in Figure _-15 can now be represented in the

simple form shown in Figure _-16.

x _ y c

The Simplified Two-axis Input Coupled S_stem

It may be shown that the vector x is related to the forcing vectors

r and n by the matrix equation

x = (I + GH)-lr - (I + GH)-IGn

where I is the identity matrix. The cross spectral density matrix

between the vectors x and r can be evaluated as

S = (I + GH)-Is
xr rr (4.11)
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since the vectors n and r are uncorrelated.

Equation 4.11 for the matrix H yields

H _ G -I ESrrSxr-i -I_

where

S
rr

rar a rar b

L rbra rbrbJ

Solving matrix

(4.12)

4.7.3

S
xr

r a r

L Xbra xbrbJ

Since the spectral matrices Srr and Sxr may readily be evaluated

from the known vectors r and x, then H may be evaluated without

any approximations. Note that this evaluation does not require

that the off-diagonal elements of the spectral matrix Srr be zero.

The matrix formulation developed above may easily be extended to

higher-order systems.

Spectral Program Description

Computation of power spectra of continuous data is performed

at TRW Systems by using the IBM 7094 correlation and spectral

analysis program. The continuous data must be first digitized and

converted into a 7094 compatible format before the spectral analysis

program may be run. The analog data records used in the spectral

analysis were of 6 minutes duration and were prepared by sequenti-

ally recording 1.5 minutes of data obtained in each of the 4 repli-

cations for a given task. Only the data in the final performance

session was used.
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The program evaluates power spectra by first computing the

correlation functions and then evaluating their Fourier transforms.

Basically, the cross correlation function between two variables

x(t) and y(t) is defined by

N-1

RX_(_) = 1 _ x(nT)y(nT-_)

n=O

where T is the s_mpling period, N is the total number of data

points, and T is the lag value. Clearly, T is always equal to an

integer number of sampling periods.

The accuracy of the power spectra (and consequently the accur-

acy of the frequency response) is primarily dependent c_ the number

of lag values and data points used in the analysis. In this

analysis the net sampling frequency was 12.5 samples/sec and the

number of lag values (m) was 250. The resultant frequency resolu-

tion Af is given by:

i

_" - 2_-.(--_.-t-_=0.025 cps

where At is the net sampling period. For 6 minutes of data sampled

at a rate of 12.5 samples/sec, the number of data points n is 4500.

However, the accuracy of the frequency response is also related to

the coherence between the input and output sigaals (Reference lO).

The calculation of the confidence bands on the frequency response

is complex since the human operatorVs coherence is frequency de-

pendent. For illustrative ptu_ses only, the 90% confidence bands

on the amplitude ratio and phase were calculated for one task at a

frequency of 0.2 cps. At this frequency the coherence between r and

y was O.731 and the resultant frequency response was

._.505 + o.i

H(jl.26) _13 ° + 120

L
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where the amplitude ratio is expressed as a magnitude. A complete

evaluation of the confidence bands over the frequency bandwidth of

interest was considered to be beyond the scope of this study.

Ideal spectral determination requires that the individual

spectra be uniform functions of frequency. Non-uniform spectra

were obtained from the human tracking experiment and consequently

prewhitening was used to improve the accuracy of the spectral

determination.
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4.8
Com_rison of the Model Matchin 6 and _ectral Aua_sis Techniques

In Section 3.7 approximate human operator models were ob-

tained to describe human performance in a coupled two-axis sys-

tem using the iterative technique as described in Section 3.4.

Since the spectral ane_ysis technique described in Section 4.7

will yield a human operator model without approxi_tions, then

this technique was used to check the approximate models obtained.

Specifical_y the average perfox_ance of one subject in Task 2

over four replications in the final performance session was

checked in this manner.

The iterative technique was used in a closed loop fashion

to obtain desoribing ction was
obtained in an open loop _nner. Figures 4-17 through 4-24

show the frequency response of the approxi, wte iterative models

obtained. For the same data I a set of approximate models was

also obtained using a closed loop spectral analysis technique

where the describing functions were computed from the equation

S

Hij = _ i = a, b

rjxj J = a,b

In Equation (4.1S) Srjy i denotes the cross power density

spectr_n between the signals rj and Yi' while Hij represents

the required describing function. The frequency responses of

the approximate spectral models thus obtained are shown in

F_re 4-17 _ _-Z_.

The a_te models obtained above were compared with

theoretically exact models determined by solving the matrix

equation

where the matrices in Equation (4.14) are as defined in

Section 4.7.2. Figures 4-17 through 4-24 show the frequency

response of the correct spectral models obtained.

(4.13)

(4.14)
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In general both approximatemodelscomparefavorably with the
correct spectral modelsand consequentlythe conclusions drawn
fromthe approximateiterative modelsin Section 3.7 are vali-
dated. Large deviations in both the amplitude ratio and phase
responsesexist abovea frequencyof 4.0 radians/sec. These
deviations are due to the closed loop coherencefunctions being
very small above4.0 radians/sec. Figure 4-25 showsa typical

coherencefunction Cybra for the describing function Hba.
For the describing function Hab, the coherencefunction Cyarb
wasnear zero over the completefrequencyrange. Since the
accuracyof any spectral analysis technique is strongly de-
pendenton the magnitudeof the coherence(ReferencelO), then
large deviations will occur in the amplitude andphasefre-
quencyresponse_lheneverthe coherenceis small. In this
context the coherencefunction betweentwo signals x(t) and
y(t) is defined by the equation

12
c --
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Approximate Computation of Human Time Dela_

Introduction

One of the major limitations of the model matching methods

currently in use is the difficulty encountered in the determination

of tlme delay (reaction time) in human pilot response. Existing

methods of implementing the tlme delay term in the model equation

are in general laborious or have extensive equipment requirements.

This section of the report describes the experiments performed to

evaluate a proposed technique to determine time delay by a first

order extrapolation. The proposed method is completely described

in Referencell. A considerable savings in computer equipment

requirements is effected since implementation of a time delay term

in the computer circuits is not required by this scheme. _ A brief

recapitulation of the method is given in the following paragraphs.

Consider for example the model of the human operator with the

input signal delayed T seconds

Y + all + a2z - a3_(t-_ ) + a4x(t-T)

where

x

2

(4.15)

- input signal to the human operator

- time delay

= output of mathematical model

- model parameters, i - 1,2,3,4

The first order extrapolation in the vicinity of T - 0 yields the

equation

5z0

zz(t,_) = z0 +_T-_ (4.z6)

(where z0 = z =0) is obtained from

_'o + :z_'o + _2Zo " :3 x(t) + :ax(t) (L..zT)
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_z0
Thepartial derivative _- is defined as the influence coefficient

u which is obtained from the solution of the equation
T

+ al_ T + m2Ux = _ =3X_t) - m4_Qt)

since in the vicinity of T = 0,

(4.is)

_( t-T) _--- E" - * (_.19)

If ¢ is approximated by the first order extrapolation Vl' then an

improvement should be realized in the model matching accuracy as

indicated by the extrapolated error signal

_l " (zz-Y) " Zo+ _lU_-y (4.2o)

where y is the output of the system to be modeled. By using bhe

error squared criterion function

f = ½ Sl 2 (4.2Z)

the approximate steepest descent method yields the following expres-

sion for T1 • _s1

T1 = - k _Tl_-_'-f= - k eI_ •

Comparison of Equations 4.17 and 4.18 yields the relationship

(4.z2)

in the vicinity of T = 0.

uT _ 0 (4.23)

Equation 4.22 is combined with the definition of sI (Equation

4.20) and Equation 4.23 to give the exPression

(4.24)rl =-k SlU T = + k SlZ0

The simultaneous solution of Equations 4.18, 4.20 and 4.23 yields

the desired extrapolation approximation. A computer block diagram

is shown in Figure 4-26.
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x(t)
TestSystem

Model

zl(t)

Zo(t) +

Figure _-26 Computer Block Diagram for the Determination of Xl

&.9.2 Experimental Procedure

The approximate computation of the time delay was studied in

both an "of_' and "on" line sense. In the "off line" case, the

T1 determination loop operates in an open loop manner as its

operation does not influence the value of the model parameters ai.

However in the "on line" case, the Xl determination loop does

affect the value of the model parameters. For "on line_' operation,

the extrapolation error signal eI - Zl-y is used to determine the

mi parameters rather than the error • = Zo-y used in "off line"

operation. The experiments performed to evaluate the T1 deter-

ruination scheme involved the testing of both kno_m systems and

human pilot data.

The test configuration was constructed as sho_ in iFigure A-26.

The system to be modeled consisted of the second order differential

equation

.y + alY + a2Y = (t-x) + a_x(t-x) (&.2_
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4.9.3

where x(t) is a low frequency excitation signal. The pure time delay

T was achieved by the use of a tape recorder delay loop. The model

to be obtained was constructed in the form

+ i + a2z - + %x

No specific allowance for time delay was included in the model. The

extrapolation method was expected to indicate the existence of time

delay in the system tested without its actual implementation in the model.

The experiments for modeling of _o_ systems consisted of continuous

"on llne" and "off line" operation, as well as iterative "on line"

operation. The experiments for modeling of human response were

performed using both continuous and iterative "on line" operation.

Results

For the initial test configuration, the =i parameters of the

model were fixed at the values of the corresponding test Equation

(A.25) coefficients given in Table 4-7.

Table 4-7

Kno_ S_stem Coefficients

Coefficient

a 1

a2

&_

a4_

Value

12

2O

10

0._ sec

For this "off lin_' determination, the resulting value obtained for the

extrapolated time del_7 was Xl " .331 sec. For an excitation frequency

in the neighborhood of 1.5 rad/sec, the estimated extrapolation

error for the technique should be approximately 18% (Reference ii).

This agrees closely with the actual error of 20.9% in the value of

the time delay obtained.
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The "off line" test of the parameter extrapolation was now per-

formed with the ai parameters adjustable but without the time delay

term affecting the model. In all cases, the values of T1 obtained

were near zero (Table 4-8). It appears that with no feedback to

the model from the T1 determination loop, the effect of time delay

was concealed in the values of the a i parameters. Since the time

delay term was not explicitly included in the model structure, its

effect becomes absorbed by the ai parameters for "off lind' operation.

These results prompted the "on line" study in which the extrapolated

error signal eI replaced the error signal s for the determination of

the ai parameters. This constituted a feedback signal from the _i

determination circuit which would reduce the compensating effect of

the "off lin_' parameter adjustment. However, an improvement in

the accuracy of the T1 determination was not realized.

Table 4-8

"Off Line" Determination of Kno_ System Parameters

Run No. a2 a3 _4

1

2

Values of
Known System

5.1

?.5

8.6

12.0

19.8

1B.4

20.4 -1.3

20.0 15.0 i0.0

_i x(t)

-i?.8 o.oo Ru_ 709

17.3 0.01 Run 710

16.9 0.01 Run 711

.4

In an effort to evaluate the concept of the first order extra-

polation and enable the determination of time delay in human systems,

an iterative strategy was used. The adjustment loop for the determi-

nation of extrapolated x was disabled. Fixed values of TI were then

introduced into the model using the "on line" strategy previously

described. For each value of TI selected, the integral of the extra-

polated error signal sI and the parameter value _i were determined

over the run length. Figure _-27 shows that the value of T could be

Successfully extracted in this manner for a known system, since the mini-

mum value of the integral of the matching error occurs near ¢i = ¢" The

iterative analysis also demonstrates the compensating effect of the mi for
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terms not included in the model. Figure _-28 shows this effect. With

the time delay term in the m_el, the a parameters are plotted as a

function of fixed values of _i" As _i approaches the correct value

T the ai parameters approach more closely to their correspcndlng _i

values. The failure of these curves to pass through the correct

values of ai is indicative of the model matching technique inaccuracy

discussed in Section _.5 of this report.

An application of the iterative strategy to human pilot tracking

failed to yield a definite value of time delay which would produce a

significant improvement in the model. Fixed values of T1 were employed

with all model parameters varying. The resulting values of the

extrapolated error were plotted (Figure A-29). However the minimum

error appeared at _l " 0 and no other well-defined minimum was obtained.
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Figure 4-27 Iterative "On Line" Determination o£ _I
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Approximation of Hi,her Order Model Terms b_ Extrapolation

Introduction

An approximation technique for parameters associated with

higher order terms in the human pilot model was proposed. This

scheme resembles the method described for the determination of time

delay. This concept has the same analytical basis and form of imple-

memtation as the extrapolated approximation of the time delay term.

A brief analysis, a comparison with the z determination method, and

a description of the results of test experiments are presented in

the following paragraphs.

Consider the example of a third order model of a human pilot

(4._)

where _ is a small non-zero parameter. As was the case for the

determination of T, the method of approximation is based on a first

order extrapolation in the vicinity of the solution z0

X-O:

_z0

zz(t'x) " zo(t) +_i- x

obtained for

(_._)

The effect of X on the modeling error s = z-y is approximated by

5zo

_1 = Sz - y = to +_- x (4.9)

The term Acan be estimated by an approximate steepest descent opti-

mization by using the equation

- k _ -k - - k GZux (4.30)" _ %"_

_f
where f = ½_ is the error criterion function, _is the gradient com-

_z
ponent, uxis the influence coefficim_t _, and k is a constant of

porportionality. The influence coefficient is obtained by the solu-

tion of the equation which results from partial differentiation

with respect to X of Equation &.27.
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Substituting the definition of the influence coefficient, Equation

4.31 becomes

_ +_'_+ _l_x+a2ux- T C4.32)

In the vicinity of X = O, Equatlcn 4.32 reduces to

_'_+ _x + a2u_ - -TO (4.33)

A comparison of Equation (A.33) and the influence coefficient

equation for parameter a1

oo • @

+ _1% + _2% " -_'o (4.3_)

indicates the relationship

*_= ux (4.35)

A significant equipmeat savings in the implementation of the X

determination 18 achieved by the use of Equation _.35. The com-

puter dlagrameho_a_ in Figure 4-_ is identical with that employed

for the extrapolated time delay _i"
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x(t)

--[ System

zl(t_

,%(t)Z_ __+
u_

Figure A-30 Computer Circuit for the Determination of

4.10.2 Experimental Procedure and Results

As for the T1 determination, experiments were performed on the

proposed scheme toevaluate its application to modeling of both a known

system and human operator response. "Off line" and "on llne" deter-

minatlon of k was studied for known system responses. The "on line"

iterative method p_ualy used for the evaluation of the time

delay extrapolation appr_xlmation was again used. The results of

the known .system tests are presented in Table 4-9. The known system

employed for test purposes was gives by

_r+ Y + ___+ ag - 5,(t)+ %=(t)

i}3



where

a I - 12

a -20
2

a " 15
3

aA _ i0

- value sho_ in Table4-9

Table _+-9

Determination of Known System Parameters (k Extrapolation)

Rttn No.

Model

%

12

11.9

12.0

11.8

Parameters, Obtained

a2 _3 %. ] X

t

20 15 IO 10.37

19.9 15.3 11.2 I

20 15 i0

20.8 15.7 I12.3

I

|

0.007

.054

.O29

0.30

0.05

-01i_ llne ,,

ai fixed at

correct values
"Off llne"

_i adjustment

gain K = 2.5
"On line"

mi fixed

K=O

"On line"

ai adjustment

ga__ K = 2.5

The typical results given in the table point out that once again an

accurate estimate of extrapolated terms can only be determined when

the ai parameters are fixed at the correct value. Without imple-

mentation of the higher order term in the model, the ai parameters

compensate by seeking values other than the corresponding values

of the test system.

The experiments on human pilot response data have shown a

similar effect. An iterative procedure identical to that employed

for time delay determination was used. Figure _-3L, which is a plot

of the extrapolated error for various fixed values of X, shows no

well defined minimum other than zero. The existence of a non-zero

minimum would indicate an improved model by the inclusion of this

higher order term in the model.
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4.11 Conclusions

_le methodology study was primarily concerned with increasing

the identification accuracy of model matching techniques and the

selection of an optimt_ technique. A secondary cou_ideration _{as

the development of advanced modeling techniques which would be

capable of yielding a more precise n_del of the human operator.

An evaluation of the model matching techniques investigated led

to the following conclusions:

l) The iterative technique employing sensitivity eqtu_tions for

the generation of influence coefficients was found to be the most

accurate (0.5_ overall error for System A ). This technique is

readily implemented on an analog computer with an intera_ive capa-

bility and was considered the optimum technique of all techniques

inve stigated.

2) The identification accuracy is dependent on excitation band-

width. For the known systems evaluated# an excitation bandwidth

greater than the natural frequency of the system being modeled,

produced excellent identification accuracy on all internal para-

meters.

B) Convergence can be improved substantially in iterative techni-

ques by equalizing the parameter adjustment rates and also by

limiting the maximum parameter correction per iteration.

4) In modeling of unknown systems, situations may arise where

the parameters may be indeterminate. However the model obtained

will match the output of the unknown system correctly and conse-

quently the system identification is unique.

5) It is theoretically possible to model the human operator's

performance in a coupled system exactly, if a matrix formulation

of the spectral analysis technique is used.

6) For the coupled systems investigated 3 the approximate models

of the human operator determined by the iterative techniques com-

pared favorably with the correct spectral models.
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7) The extrapolation methods used in extracting an unknown

time delay and the coefficient of the third derivative of the

response, did not give satisfactory results. However, the

model matching techniques were not very accurate at the time

of the study and consequently the extrapolation methods may be

feasible using the refined techniques just developed.

8) Closed loop model matching will be unstable if during the

convergence period, the model parameters assume values which

9) Prefiltering must be used if accurate closed loop model

matching of typical manual control systems is to be performed.
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o CONCLUSIONS

Model matching techniques were used in analyzing human track-

ing performance in both uncoupled and coupled two-axls systems.

Specifically the effects of training, task difficulty and cross-

coupling were evaluated by examining the parameters of mathematical

models. Analyses of variance were performed in order to obtain

statistical significance levels for the major results.

The report is divided into three major sections. The first

deals with human performance in single and two-axis compensatory

tracking systems where the plant dynamics were identical in both

the single-axis system and the sy_netrical two-axis system.

Second-order dynamics consisting of a pure integration and first-

order lag were used. Linear second-order describing functions

were used to model the operatorts performance. Analysis of system

tracking error showed that the rate at which error decreased with

training was directly proportional to task difficulty. The ampli-

tude ratio and phase lead of the model describing function increased

with training indicating an increase in open loop bandwidth and

a decrease in phase margin. Increasing the plant lag time con-

stant resulted in an increase in the model lead time constant

and a decrease in the zero frequency gain. No significant differ-

ence was found to exist in the tracking error per axis between the

two-axis tasks and the single-axis tasks. However the model lead

time constant was significantly greater in two-axis tracking.

The second section of the report is concerned with the evalu-

ation of human performance in coupled two-axis systems. Again

the plant dynamics were of second-order form and the human operator's

performance was modeled by a 2 x 2 matrix whose elements were

second-order describing functions. Analysis of the matrix models

obtained showed that the human operator can decouple the system

for certain forms of cross-coupling. His decoupling performance

can be predicted from decoupling equations which are readily

derived analytically. Learning was evident for all tasks with the

asymmetrical task being the most difficult.
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The third section of the report deals with a methodology study

of model matching techniques. Analysis of the identification per-

formance of continuous, iterative, and extrapolation techniques

showed that the iterative tec_ique using sensitivity equations

for the generation of the influence coefficient, was the optimum

technique. It is readily implememtable on an analog computer with

an iterative capability and possesses excellent identification

accuracy. Convergence in iterative techniques can be improved

substantially by equalizing the parameter adjustment rates and

limiting the maadmum parameter correction per iteration. Good

identification requires that the excitation bandwidth be greater

than the natural frequency of the system being modeled. Also

prefiltering must be used if accurate closed loop model matching

of typical manual control systems is to be performed. Finally, it

was shown that the human operatorts performance in a coupled system

could theoretically be modeled exactly if a matrix formulation of

the spectral analysis technique was used.
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A.1

APPENDIX A

CONV_G_CE STUDY OF FIRST-ORD_ MODEL PARAMETERS

Introduction

An experimental study of the convergence properties of the

continuous model matching technique was performed using a first-

order system with three parameters. The mathematical model

was of the same form as the system and contained the three para-

meters to be identified. The purpose of the study was to deter-

mine the effect of adjustment gain and parameter initial con-

ditions on the convergence characteristics of the model parameters.

Convergence was measured by final accuracy of the parameters, time

required to reach steady state and repeatability.

Identiflcatica was performed using the continuous technique

described in Section _.2 with the slope-limited quadratic

criterion function described in the same Section.

If the system and model inputs are denoted by x and their

respective outputs by y and z, then the differential equations

describing the dependence of y and z on x are given by

•y + blY - b + b3x (A.1)

• _ 83xz+81z= 8 + (A.2)

where bl, b2 and b3 are the (constant) coefficients of the system

and 81, 82, and 83 are the model parameters. The model parameters

are adjusted by the model-matcher so as to make • = z-y approach

zero. For this study the system parameters were chosen to have

values representative of comparable human operator models.

Specifically these values were

bI = _0 sec -I

b2 = 15

-i
b3 = 25 sec
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Equation (A.I) may be written in the transfer function form

A.2

y KO(_I s + i)

(s) .... s + l)

where KO = h= 0,625
bI

Vl = b3 = 0.6 sec

i

T2 = bl 0.025 sec

and s is the Laplace operator. A two minute tape recording of a

tracking error history obtained from a compensatory tracking

experiment was used as the input x for all phases of the stud_.

The convergence stud_ was initiated by first investigating the

repeatability characteristics of the model-matcher for various

values of the initial conditions of the _ parameters.

Effect of Initial Parameter Values

A random choice for the initial parameter values will yield

a criterion function whose magnitude at t = 0 will also be of a

random value. To circumvent this dilemma, the initial conditions

were chosen such that the criterion function would have a large

initial mEnituie by assigning zero initial ccnditlons to [32 and,

_' r_e _ram6t_% % =_ __on-,ero to keep _e =_ t_sf_l_

function gain from _e,.htr.g infinity. Speclflcal_ Pl was

initially chosen to have values which were either high or low by

50% with respect to the known value for bI. With the above des-

cribed initial conditions, a repeatability experiment was performed

on the model-matcher to determine the effect of these initial

conditions on the repeatability characteristics. In these experi-

ments, the model-marcher was allowed to operate on the input data

for short lengths of time. Model-matcher gains of 30, 60 and 90

were used. Figure A-1 shows the poor repeatability characteristics

for the 8 parameters when 81(O) = 0.Sb I and the adjustment gain
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A.3

was 60. With _i(0) = l.Sbl, the parameter repeatability was

markedly better as shown in Figure A-2. Adjustment gains of 30

and 90 yielded similar results. The reason for this behavior

is evident if one notes that 1 is the model lag time constant (or,

_lis the model lag break frequency). Making _l smaller than the

systam lag break frequency bI means that the frequency content of

be model output z is reduced, as compared to the system output and

the matching error does not contain enough information to obtain

accurate identification. Starting with _i > bl is clearl_

desirable since now the frequency content of z exceeds that of y

and the error is sensitive to parameter changes. This observation

is further verified in the bandwidth-convergence study discussed

in Section _.5. Initial conditions of BI(O) = l.Sb I were used

in all of the subsequent experimental measurements.

Long Term Convergence

In operation the model-matcher should cause the _ parameters

to converge on their true values if sufficient time is available.

A typical time history of this process is shown for one parameter

in Figure A-3. Note that the parameter converges approximately

to the true value in two distinct steps. Initially the convergence

is very rapid and consequently this portion of the convergence

has been termed short term convergence. After this rapid initial

convergence, the parameter requires a long settling time before

it reaches a steady-state value (i.e., long term convergence).

The initial convergence is rapid because the error s is large

and consequently the slope of the criterion function is large.

However, when the error becomes small (point A on Figure A-3),

the resultant criterion function has a small slope with respect to

which decreases the convergence rate.

An experimental study was conducted on the long-term parameter

convergence to determine the effect of adjustment gain and matching

time on parameter accuracy. Figure A-_ shows the percentage error

in the _ parameters for the various adjustment gains where the

parameter values were dete_nined upon completion of a 2-minute
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run. Percentageerrors for the equivalent transfer function
parametersare also shownin Figure A-4. Clearly, Figure A-4
indicates that the _ parametersma_be obtained with a percentage
accuracyof _+6%or better while the transfer function parameters
maybe determinedto an accuracyof _+4%.In particular the para-
meter K maybe determinedto an accuracyof better than 0.5%.

In an attempt to increase the accuracyof the convergence
process, the samedata wasrun throughthe model-matchera number
c_times. Four adjustmentgains of lO, 90 60and 90 wereused
and the final parametervalues of one run were made the initial

conditions for the subsequent run. Figure A-5 indicates the

dependence of _ parameter percentage error on the number of

replications R as well as the gain used. In general, the perce_t-

age error was greater after two replications. In cases where

three replications were made, the percentage error had either

reached a plateau (for k = 60) or was approaching one (for k = 10).

All parameters had approximately the same percentage error and

were predominantl_ negative. Percentage errors were also cal-

culated for the equivalent transfer function parameters and are

shown in Figure A-6. Again, the use of replications is apparently

not warranted as the accuracy is not increased substantially.

The one exception occurs when the gain is 60. Here a definite

increase in accuracy for the K and T1 parameters was obtained if

repllcaticns were made. Cc_son of the accuracies for the _ and

tranBfer furctic_ parameters indicates that the transfer function

pmmamete_s are a_L_.n ,,tore accurately determined (especially for

K and T1). This resalt is due to the fact that the transfer

functica parameters are ratios of _ parameters. Since the

parameters have errors which are consistently negative and approxi-

mately equal, it follows that their ratios will be much more

accurate with the sole exception of parameter T2 which is not a

ratio but a reciprocal. Figure A-6 clearly shows that T2 is

much less accurate than K or T1. (See Appendix B for an analysis

of these results based on sensitivity considerations.)



A._

A.5

Short Term Convergence

During the long term convergence experiments it was noted

that the error was very close to zero at the end of ths short term

convergeace period. To determine the parameter accuracy at this

point, an experiment was conducted in which the short term para-

meters were found for five randomly chosen points of the same

data run previously used. These parameters were then averaged

and the RMS value of the percentage error determined. In general.

the accuracies were not as good as in the long term case. However,

the transfer function parameters with the exception of T2 were found

to be accurate to 5% over all of the adjustment gains used.

Figure A-7 compares the accuracy of the _ and transfer function

parameters. Again, the transfer function parameters are more

accurate with the exception of T2. This may be explained by the

s_ne argument used for the long term convergence study. It is

important to realize that the short term parameters are accurate

to 10% RMS for k = 90 as their values may be determined in a second

or two while the long term parameters require about 60 seconds.

Conclusions

An experimental study of the convergence characteristics of

the continuous method using a first-order model led to the

following conclusions:

l) Parameter adjustment repeatability was good when _l(O) > b1

and _2(0) - _3(0) - O.

2) For long term cenvergence, the [3parameters may be obtained

with a percentage accuracy of _+6% while the transfer function

parameters may be determined to an accuracy of +4%.

3) Use of replications does not substantially decrease the long

term coavergence error.

_) No optimum gain was found for long term convergence.

5) For short term convergence, both the _ and transfer function

parameters may be determined with an accuracy of 10% (RMS) at an

adjustment gain of 90.
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6) The optimum adjustment gain for short term convergence was

90 (the highest value used).

7) For both long and short term convergence, the transfer function

parameters may be obtained with a better perc_utage accuracy than

the _ parameters except for the case of T2 for which no significant

difference occurs.

8) The transfer function parameter K may be determined with the

greatest precision (0.5% for long term ccavergemce and 2% for

short term).

Direct application of these results to the prediction of

model-n_tcher performance on differential equations with unknown

coefficients and of an order other than one_ cannot be Justified

from the experiment as the stud_ was only concerned with an

equation of order one with _own constant coefficients. If the

unknown coefficients are slowly time-variant it may be possible

for the model-matcher to follow the variation in the unknown

parameters with a fair degree of accuracy as the model-matcher

does exhibit a good short term parameter convergence accuracy.

An analytical study of the sensitivities of the _ and transfer

function parameters has been made to explain the difference in

behavior of the two sets of parameters. This analysis in general

supports the experimental work reported here and may be found in

Appendix B.
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Fi_e A-5 Effect of Replication on Lon_ Term Convergence
Accuracy (_ Parameters)

l_O



Figure A-6 Effect of Replication on Long Term Convergence

Accurac 2 (Transfer Function Parameters)

igi



FiL_re A-7 Effect of Adjustment Gain on Short Term

Convergence Accuracy
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APP_DIX B

RELATIVE SENSITIVITY OF HUMAN PILOT MODEL PARAMETERS

B.I

B.2

Problem Statement

Experimental results indicate that the parameters in a

transfer function model of the human operator, especially the

steady state gain factor K, te_d to be determined with greater

precisic_ by the model matchin E process than the individual

coefficients of an equivalent differential equation model. This

Appendix shows that this result is traceable to the relative

magnitude of the model sensitivities to the various parameters.

The _e of analyzing these relationships is to confirm

the trends exhibited by the experimental results in quantative

and qualitative terms, and to find criteria for selecting mathe-

matical model structures that yield to parameter identification

processes with higher precision than others. On the basis of

this analysis it will also be possible to distinguish between a

case of poor computer accuracy and a mathematically unfavorable

choice of the task which the computer is asked to perform.

E_uivalent Model Forms

In this discussion we compare the first-order linear model

differential equation

; + pzz- + p3x (B.I)

having parameters Pi with the equivalent transfer function model

where

TlS + 1

X T2s + 1

132 1

(B.2)

(B.3)
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B.3

Both model forms (B.I) and (B.2) have been used interchange-

ably in previous work. Computer results (Reference ll ) show

that K is a well-defined parameter, whereas the terms 81" 63

which determine K tend to drift simultaneously or yield somewhat

inconsistent results in repeated modeling runs of the same human

operator tracking data. T1 and T2 are also defined with greater

relative accuracy than the corresponding _i terms.

Sensitivit2 Equations and Sensitivity Ratios

The influence coefficients ui = 8z/_ i are obtained by solu-

tion of the sensitifity equations derived from (B.I). In trans-

form notation, assuming zero initial values,

TlS + 1

UI= -KT 2 (T2s + l)2 X

T2s

U2 = T2s + i X = sU3
(B.4)

T2
X

U3 = T2s + i

Similarly the sensitivity equations for

V0 = _ VI = _Z V2 = 5Z
' _TI '

yield

TlS + i

VO = T2s + i X

s X
V1 = K T2s + i

S(TlS+ i)

V2 = -K (T2s + i)2 X

(B.5)
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For simplification of the subsequent discussion we form the sen-

sitivity ratios

U1 _ K(TlS + l)

ql2= u_= s(T2s+ i)
rOl = VO = TlS + i

Ks
Vl

uI _(TlS+ I) vo T2s+ 1

ql3 = _3 = T2s + 1 r02 = V_ = Ks

U2 V1 T2s + i

q23 = U3 s rl2 TlS + 1

(B.6)

These expressions which permit an estimate of the relative magni-

tude and power of the sensitivities Ui and Vi are illustrated

by Bode diagrams shown in Figures B-I and B-2 respectively, for

a typical case where the parameter values are

_i = AO sec -I K = O.625

_2 = 15 or TI = 0.600 sec

-i

_3 = 25 sec T 2 = 0.025 sec

(This parameter condition has been the subject of an extensive

experimental model matching st_ and data ana_eis as reported

AppendixA-)
%

While m and q give relative sensitivities of the parameters

within the models (B.I), (B.2) respectively, the relative sensi-

tivities between the models are expressed by the ratios 5 , 5 ,

v2 vletc. The term

v0

T2

v0 " Tls+ Z (B.7)

is plotted in Figure B-2. Using this term for calibration the

other relative inter-model sensitivities can be deduced.

i_9



iiii_
IIIL

O_

c_

_o

c_
Q)



o

o

.-I.--_L

_,--t

0

o

o
.rl

g
o3 1

O

o

g

g

_4

",'4

157



B._ Discussion

In evaluating the amplitude vs. frequency plots for r and

q one must take into account the upper frequency limit of the

excitation si_aal x(t) occurring in human tracking studies.

On the basis of past experiments we set the cutoff frequency

roughly at _c = 5 rad/sec to obtain estimates of relative ma_ai-

tude of the Ui and Vi . (The resulting estimates reflect this

choice of _c ). In the frequency range of interest the sensitivity

ratios behave as follows:

Table B-I

Range of Sensitivity Ratios

Differential Equation
Parameters

Transfer Function

Parameters

ql2 --6.0 ... O.& ro1 --15 ... 1.0

q13 "0"6 ... 2.0 r02 "_15 ... 0.3

q23 _0.i ... 5.0 r12 " 1 ... 0.3

Between Models

_I _ tO lOO
@@@

This leads to the following observations:

l) The parameters _l' _2 p _3 have essentially the same degree

of sensitivity in the vicinity of _ = 1 rad/sec. This agrees

with the findings, in Appaudix A, of comparable accuracy of

all _'s. U3 dominates U2, U1 in the lower frequency region,

U1 dominates U2 at low frequencies, U2 dominates U1 and U3 at

high frequencies. On the average the sensitivities are approxi-

mat ely matched.

2) The parameter sensitivities for K, T1, T2 are also of

the same order of magnitude near _- 1 ra_sec. V0 dominates

VI and V2 very distinctly up to frequencies of 1.5 rad/sec.

VI and V2 are of similar ma@uitude, but V2 tends to dominate

V0 and VI in the upper frequency range. The high accuracy of K

exhibited in the experimental study confirms this result.
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3) Themost striking difference in sensitivities is indicated

by the behavior of VJU 3. Figure B-2 shows that K is determined

with an accuracy at least an order of magnitude higher than 153"

This result can also be seen by noting that

(B.8)

For constant _i = 40,

Furthermore, since near _ = i the relative sensitivities of

the _i are comparable, K can be determined much more accurately

than all the _i not only %" Thus for the case investigated the

steady state gain K is determined with an accuracy at least

an order of magnitude higher than the parameters Bi" In view of

the values rOl , ro2 and the ratio ----VJu_we deduce that T1 and T2

should also be considerably more well defined than the _i's. This

finding is confirmed by the experimental results.

Additional insight is gained by noting that

VI K
--=--e= 25s

u3 T2

V2 m ,Bs__ 4om

which shows that, except for very low frequencies, V1 and V2

dominate over the U's.

_) The above results are largely parameter-dependent. For

example, rOl is shaped by TI and K. Figure B-3 illustrates how

rOl varies with increases in each of these parameters. As T1

increases, the dominance of VO is enhanced, an increase in N
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B.5

has the opposite effect, The dominance of V0 over Ul, U2, U3

depends strongly on T2. For increased T2 (human pilot lag time

constant) to more typical values of O.1 - 0.2 sec the preponder-

ance of V0 decreases by an order of ma_itude but is still

noticeable. T1 has a muchmaller effect on the ratio U3_ 0 unless

T1 is substantially increased above the 0.6 sec value used in this

discussion.

r12 and q23 are largely uninfluenced by parameter changes.

Conclusion

The simple ana_ical method presented here is very useful

in detecting sources of parameter definition accuracy or in-

accuracy which may otherwise remain obscure. The method can be

readily extended to practical problems characterized by second

order models, but remains limited to linear structures.

The method serves to _Inpoint mathematically favorable

model formats or parameter combinations to be selected for the

optimization program. As a general method of sensitivity analysis

it has a range of applications in control engineering, system

optimization, adaptive control, and related fields where it

should be further pursued.
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APP_DIX C

TYPICAL TIME HISTORIES OF THE HUMAN OPERATOR M_)DEL

Human performance in two-axis systems without cross-coupling was

modeled with the conventional second-order model. A continuous model

matching technique of the form described in Section h.2 was used to

obtain the model parameters. Figure C-1 shows a typical parameter time

history Obtained for Task h. Approximate modeling of human performance

in two-axis systems with cross-coupling was accomplished using the itera-

tive model matching technique described in Section 3.&. Figures C-2

through C-5 show a set of typical time histories of the model parameters

for one subjectts performance in Task 2. Figures C-6 through C-9 show

a similar set of time histories obtained for Task 3. The parameter

values used in the models were obtained by averaging the model para-

meters over the last minute of the modeling run. Examination of the

time histories shows that parameter convergence was good and that the

parameters were stable once convergence was reached. Similar time

histories were obtained in the determination of the other models. In

general, no difficulties were encountered other than the occasional

instability that would arise in closed loop model matching. This

instability was due to the model parameters assuming values during

the convergence process which would cause a negative phase margin.

Prefiltering of th_ form described in Section _.5 was used in all

closed loop model determinations.
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